January 15, 2013

Fourth Quarter 2012 Groundwater Monitoring Report

Former Powerine Refinery 12345 Lakeland Road, Santa Fe Springs, CA

SLIC No. 0318, ID No. 2040071 CAO 97-118

Prepared on Behalf of

Isola Law Group, LLP Lodi, California

Prepared for

Regional Water Quality Control Board Los Angeles Region

Prepared By

TABLE OF CONTENTS

TABLE	OF CON	ITENTS	i
List of	Tables.		ii
List of	Figures		ii
List of	Append	lices	ii
1.0	INTRO	DUCTION	1
1.1	Pur	oose	1
1.2	Site	Description and History	1
2.0	GROU	NDWATER SAMPLING ACTIVITIES	2
2.1	Mor	nitoring Network	2
2.2	Gro	undwater Gauging	3
2.3	Free	P-Phase Petroleum Hydrocarbon (FPPH) Measurements	3
2.4	Gro	undwater Purging	3
2.5	Gro	undwater Sampling and Analysis	3
2.6	Qua	lity Assurance/Quality Control	4
2.	.6.1	Trip Blanks	4
2.	.6.2	Duplicates	4
2.	.6.3	Equipment Blanks	4
2.	.6.4	Laboratory QA/QC Program	4
3.0	RESUL	TS & DISCUSSION	5
3.1	Gro	undwater Surface Elevations and Gradient	5
3.2	Free	Phase Petroleum Hydrocarbons	6
3.3	Gro	undwater Analysis	6
3.	.3.1	TPHg	6
3.	.3.2	VOCs and Oxygenates	7
3.	.3.3	Biodegradation Parameters	8
3.	.3.4	QA/QC	10
4.0	SUMM	IARY & CONCLUSIONS	11
4.1	Gro	undwater Surface Elevations and Gradient	11
4.2	Free	e-Phase Petroleum Hydrocarbons	11
4.3	Gro	undwater Quality	11
4.	.3.1	Off-Site Sources of Petroleum Hydrocarbons	12

4.	.3.2	Discussion of Solvent Detections	12
4.	.3.3	Assessment of Vapor Risk from Groundwater Plume	13
4.4	Biod	legradation	13
5.0	REFERI	ENCES	15
6.0	CLOSIN	IG	16

List of Tables

Table I Well Construction Details

Table II Summary of Groundwater Level Measurements

Table III Summary of TPH and VOC Results

Table IV Summary of Biodegradation Parameters

List of Figures

Figure 1 Site Location Map

Figure 2 Site Plan Showing Monitoring Well Locations

Figure 3 Site Plan Showing On-Site Monitoring Well Locations and

Groundwater Elevation Contours Q4 2012

Figure 4 Site Plan Showing Groundwater Surface Elevations Q4 2012

Figure 5 Site Plan Showing TPHg Isoconcentration Contours Q4 2012

Figure 6 Site Plan Showing Benzene Isoconcentration Contours Q4 2012

Figure 7 Site Plan Showing MTBE Isoconcentration Contours Q4 2012

Figure 8 Site Plan Showing ORP Isoconcentration Contours Q4 2012

List of Appendices

Appendix A Groundwater Monitoring Field Forms

Appendix B Analytical Laboratory Reports

Appendix C Hydrographs

1.0 INTRODUCTION

On behalf of Isola Law Group, LLP, Murex Environmental (Murex) has prepared this *Fourth Quarter 2012 Groundwater Monitoring Report* for the former Powerine Refinery property located at 12345 Lakeland Road in Santa Fe Springs, California (Site; **Figure 1**).

1.1 Purpose

The objective of the quarterly groundwater monitoring is to evaluate groundwater quality beneath the site and adjacent properties (**Figure 2**) and to provide regular updates to the Regional Water Quality Control Board, Los Angeles Region (RWQCB). This report presents the groundwater monitoring activities performed between October 26, 2012 and November 21, 2012, in accordance with the RWQCB Cleanup and Abatement Order (CAO) No. 97-118.

1.2 Site Description and History

The Site is approximately 55 acres in size and is bordered to the north by Florence Avenue, to the south by Lakeland Road, and to the east by Bloomfield Avenue (Figure 2). Commercial/light industrial properties border the site to the west. The site was operated as an oil refinery from the 1930s until July 1995. Historical aerial photographs indicate that the western portion of the site may have been used for agricultural purposes from approximately 1928 to 1938. Oil production-related structures such as ponds and aboveground holding tanks may have also been located onsite during this time period (Haley & Aldrich, Inc. [Haley & Aldrich], 2005). The refinery is not currently in operation; however, some of the refinery structures remain onsite. These structures are scheduled to be removed prior to the redevelopment of the property for commercial/light industrial use.

Previous refining operations included processing crude oil into several grades of fuel including kerosene, leaded gasoline and aviation fuel, unleaded gasoline, jet fuel, high and low-sulfur diesel, fuel oil, and petroleum coke. Soil and groundwater quality beneath and in proximity to the site have been impacted by past site operations. Soil and groundwater investigations are being conducted pursuant to a CAOs (No. 97-118) issued by the RWQCB to Powerine Oil Company (CENCO Refining Company) in 1997 (Haley & Aldrich, 2005).

2.0 GROUNDWATER SAMPLING ACTIVITIES

Quarterly groundwater monitoring has been conducted since August 1986. The previous monitoring event was performed by Murex in September 2012. The following subsections summarize work completed during the fourth quarter 2012 monitoring event.

2.1 Monitoring Network

The quarterly groundwater monitoring program currently includes the existing 59 wells, as listed in **Table I** and shown on **Figure 2**. These wells include:

- Twenty-two onsite groundwater monitoring wells: MW-101, MW-103, MW-104A, MW-105, MW-201, MW-202, MW-204, MW-205, MW-504, MW-701, MW-702, MW-703, MW-704, MW-705, MW-706, W-9, W-10, W-11, W-12, W-17A, W-17B, and W-17C;
- Twenty-five downgradient offsite groundwater monitoring wells of which:
 - Four are located on the former Lakeland (aka "Coaster") property: MW-501A, MW-502, MW-503B, and MW-707; and
 - Twenty-one are located on the Metropolitan State Hospital (MSH) property:
 MW-600A, MW-601A, MW-603, MW-604, MW-605, MW-606, MW-607,
 MW-708, MW-709, MW-710, MW-711, MW-712, MW-713, MW-714, MW-715, W-14A, W-14B, W-14C, W-15A, W-15B, and W-15C;
- Seven offsite groundwater monitoring wells located to the southeast on the Walker property including: EW-1, W-1, W-3A, W-4, W-16A, W-16B, and W-16C;
- Three offsite groundwater monitoring wells located to the east on the Bloomfield property that include: MW-106A, MW-107A, and MW-203; and
- Two onsite, deep, former water production wells identified as W-7 and W-8.

2.2 Groundwater Gauging

Murex inspected and measured the depth to groundwater in all 59 of the wells on October 26, 2012. During gauging, wells are also checked for the presence and thickness of free-phase petroleum hydrocarbons (FPPH) product. Of those, 19 wells were dry, and 3 contained free-phase petroleum hydrocarbon (FPPH).

Table II summarizes the groundwater elevation and free product thickness measurements.

2.3 Free-Phase Petroleum Hydrocarbon (FPPH) Measurements

Wells that initially exhibit the presence of FPPH are purged until they become dry or until approximately 6 to 10 well volumes are evacuated. Thereafter, the wells are inspected for the return of FPPH and if present, its thickness is measured over longer and longer time intervals (in general 1 hour, 2 hours, 4 hours, 24 hours, 3 days, 7 days, and 10 days).

For wells in which FPPH does not return within the first day, groundwater is sampled for analysis.

Further discussion of the wells exhibiting free product is presented in Section 3.2.

2.4 Groundwater Purging

The groundwater monitoring wells that contained groundwater, with the exception of production wells W-7 and W-8, were purged via a dedicated vacuum stinger that was connected to a truck-mounted vacuum pump truck operated by Nieto & Sons. W-7 and W-8 are deep production wells and are sampled without purging water from them first. During purging, extracted groundwater volume and quality were recorded. The parameters measured during purging were temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), color, and odor. The results of the field parameter testing are summarized in **Table IV**. Purged groundwater was disposed of by Nieto & Sons at the wastewater treatment system in operation at the Site.

2.5 Groundwater Sampling and Analysis

Following purging, groundwater samples were collected by disposable bailer from the wells and placed in sample containers and stored in pre-cooled ice chests and transported under proper chain-of-custody (COC) procedures to Sunstar Laboratories, Inc. (Sunstar Labs) of Lake Forest, California, California Department of Public Health Environmental Laboratory Accreditation Program (ELAP) #2250. All collected samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by U.S. Environmental Protection Agency (USEPA) Method 8015M, and
- Volatile organic compounds (VOCs) with oxygenates by USEPA Method 8260B.

Results of these analyses are summarized in **Table III**. Results of the field-measured parameters are shown in **Table IV**.

2.6 Quality Assurance/Quality Control

In accordance with the Quality Assurance/Quality Control (QA/QC) plan, Murex collected and submitted field duplicate samples and trip blanks for laboratory analysis as a quality assurance/quality control measure.

2.6.1 Trip Blanks

Trip blanks (provided by SunStar Lab) accompanied each daily groundwater sample shipment to evaluate the potential contamination of field samples during storage and transport. Trip blanks were analyzed for VOCs only.

2.6.2 Duplicates

Duplicate samples, which assess the precision of the laboratory analyses, were collected from wells MW-704, MW-705, and MW-706. This represents a duplicate frequency equal to approximately 13% relative to the total number of wells sampled. The duplicates followed the same analytical protocols as their respective primary samples. The results of the duplicate analyses are shown in the results tables beside the original sample result.

2.6.3 Equipment Blanks

Equipment blanks were not collected because dedicated stingers were used to purge the wells and new disposable bailers were used for sampling, therefore eliminating cross-contamination between wells during the purging and sampling process.

2.6.4 Laboratory QA/QC Program

Laboratory QA/QC reports were reviewed to confirm proper completion of data validation tests, including batch QC results, method blanks, laboratory control samples, matrix spikes, and duplicates. The results of lab QC tests were within acceptable limits.

3.0 RESULTS & DISCUSSION

This section presents the results of the fourth quarter 2012 groundwater monitoring event. As mentioned earlier in the report, well completion details are provided in **Table I**. Groundwater level measurements and groundwater elevations are summarized in **Table II**. Comprehensive analytical results, including historical and recent results, are compiled in **Tables III**. **Table IV** contains a summary of bio-attenuation and field-measured parameter readings.

Figure 3 shows the groundwater elevation measured at each monitoring well, as well as the overall gradient and direction of groundwater flow on-Site. **Figure 4** depicts the same information for the entire monitoring well network. **Figure 5** shows the concentrations and estimated contour lines of TPHg measured in each well, and **Figure 7** shows similar concentrations and contour lines for benzene and MTBE.

Well measurement and groundwater sampling forms are attached as **Appendix A**. Laboratory reports and completed COCs are included in **Appendix B**.

The presentation of the chemical testing results in this report does not distinguish between constituents in groundwater that likely originated from the Site and those that are resultant from other sources located off-Site. Chemicals in groundwater related to off-Site sources are further discussed in Section 4.3.

3.1 Groundwater Surface Elevations and Gradient

Groundwater surface elevations were calculated for each well by subtracting the water level measurement from the top of casing elevation (**Tables I and II**). Groundwater elevations were adjusted for wells containing FPPH, assumed to have a relative density of 0.80, which is typical for mean density of various petroleum hydrocarbon mixtures. Groundwater elevations, contour lines, flow direction and gradient are shown on **Figure 4**.

Based on groundwater level measurements obtained on October 26, 2012, first-encountered groundwater beneath the site vicinity ranges in elevation from 16.19 to 51.24 feet above mean sea level (ft-amsl). Wells W-7 and W-8 are former production wells, with screens situated deeper than 500 feet bgs. Their elevations were higher, between 47.62 and 62.39.

In general, groundwater elevations were lower to those measured in the third quarter 2012 monitoring event. For the A horizon, groundwater elevations had exhibited steady

decreases for several years until the third quarter 2010, when they experienced a significant increase. The increase continued in the fourth quarter 2011 and has apparently leveled off. The groundwater elevations in the B and C horizons appear to indicate similar patterns to the A horizon, though one to two monitoring events prior to the A horizon. As a whole, the average change in groundwater elevation over all the wells measured was a decrease of approximately 1.15 feet from the third quarter 2012 sampling event. **Appendix C** includes hydrographs depicting the change in groundwater elevation over time in the A, B, and C screened horizons, respectively.

The average horizontal groundwater gradient is approximately 0.008 foot per foot (ft/ft), as shown in **Figure 4**, which was similar to the previous monitoring period, and represents what is considered a moderately steep gradient. The groundwater flow direction originates from the northeast and turns south across the area of study. This flow direction is relatively consistent with those historically reported in previous investigations.

3.2 Free-Phase Petroleum Hydrocarbons

Measurable FPPH, also known as light non-aqueous-phase liquid or LNAPL, was detected in monitoring wells EW-1, W-15A, and MW-708 (**Table II**). Well W-15A continues to exhibit FPPH, which was first measured in 2011. FPPH was measured at a thickness of 2.47 feet in W-15A, 0.88 feet in EW-1, 0.19 feet in MW-708. During previous monitoring events going back many years, FPPH was also historically detected in wells MW-101, MW-103, MW-104, MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-501, MW-502, MW-503, MW-503B, MW-504, MW-600, MW-600A, MW-601, MW-601A, W-3A. The majority of these wells are now dry.

3.3 Groundwater Analysis

Groundwater analytical results are summarized in **Tables III**, and laboratory reports and completed COCs are included in **Appendix B**.

3.3.1 TPHg

Fourth quarter 2012 TPHg results are presented in **Table III** and **Figure 5**. TPHg was detected in 38 out of the 40 wells sampled at concentrations ranging from 0.052 milligrams per liter (mg/L) in monitoring well W-14B to 35 mg/L in monitoring well MW-711.

The most significant decreases in TPHg were observed in wells W-15A, MW-708, MW-712, and MW-713. For the second consecutive event, well W-15A exhibited the largest decrease among all the wells from 23 mg/L to 4.5 mg/L.

The most significant increase was observed in monitoring well MW-711, where TPHg concentrations rose from 28 mg/L in the third quarter 2012 to 35 mg/L in the fourth quarter 2012. TPHg was detected in the sample collected from well W-14A at a concentration of 3.8 mg/L in the fourth quarter 2012, compared to 1.6 mg/L in the third quarter 2012. This well has been non-detect (<50 μ g/L) historically, but has exhibited increasingly elevated TPHg concentrations for the past four monitoring events.

3.3.2 VOCs and Oxygenates

A summary of VOC and oxygenate analytical data for the fourth quarter 2012 is presented in **Table III**, along with historical data from previous monitoring events.

3.3.2.1 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Benzene was detected in 30 samples from the 40 total wells sampled. Concentrations ranged from 0.50 μ g/L in well W-8 to 6,200 μ g/L in well MW-711 (**Figure 6**) (25 of these wells contained benzene at concentrations exceeding the 1 μ g/L California Maximum Contaminant Level (MCL) in drinking water). Benzene concentrations in the fourth quarter of 2012 were similar to concentrations observed during previous monitoring events.

Of the other BTEX compounds analyzed for, toluene was detected in samples from 15 wells at concentrations ranging from 0.56 μ g/L in MW-705 to 7,000 μ g/L in MW-711. Toluene was detected above its California MCL (150 μ g/L) in 2 wells this quarter.

Ethylbenzene was detected in the samples collected from 19 wells at concentrations ranging from 0.64 μ g/L in W-7 to 1,400 μ g/L in MW-711. Ethylbenzene was detected at or above its California MCL (300 μ g/L) in 2 wells this quarter.

Total xylenes, including the *ortho, meta*, and *para* isomers, were detected in samples from 18 wells at concentrations ranging from 0.57 μ g/L in W-7 to 6,800 μ g/L in MW-711. Xylene was detected above the California MCL (1,750 μ g/L) in two wells this quarter.

3.3.2.2 Methyl tert-Butyl Ether (MTBE)

The oxygenate MTBE was detected in samples from 15 wells at concentrations ranging from 1.3 μ g/L in MW-503B to 610 μ g/L in MW-704 (**Figure 7**). The 13 μ g/L drinking water MCL established for MTBE in California was exceeded in four wells.

3.3.2.3 tert-Butyl Alcohol (TBA)

TBA, another oxygenate and a byproduct of MTBE breakdown, was detected in 15 of the 40 sampled wells at concentrations ranging from 11 μ g/L in well W-17C to 120 μ g/L in well

MW-15A. The California Notification Level (formerly Action Level) and Response Level for Drinking Water for TBA is 12 μ g/L. A total of 14 out of the 15 TBA detections exceeded this limit for this quarter.

3.3.2.4 Other VOCs

In addition to the aforementioned constituents of concern, several VOCs were detected in groundwater during this monitoring event. Some of these compounds, such as naphthalene, n-propylbenzene, and trimethylbenzene, for instance, are related to petroleum hydrocarbon releases.

Conversely, also detected were chlorinated solvents, such as tetrachloroethylene (PCE), trichloroethene (TCE), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), and cis- and trans-1,2-dichloroethene (cis-1,2-DCE and trans-1,2-DCE), among others, which we believe are the result of off-site contamination entering the Powerine well network. Chlorinated solvents were detected in the following wells this quarter: MW-104A, MW-106A, MW-701, MW-703, MW-704, MW-705, MW-710, MW-711, W-10, W-11, W-14A, W-14B, W-14C, W-16B, W-16C, and W-17A.

The most significant detections of chlorinated compounds are described as follows: to the southwest, in wells MW-710 and W-14B, PCE and TCE were detected between 4.3 and 130 μ g/L.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

3.3.3 Biodegradation Parameters

Biodegradation of TPHg most commonly occurs by aerobic, nitrate-reducing, ferric iron (Fe³⁺)-reducing, sulfate-reducing, or methanogenic respiration. TPHg and BTEX serve as electron donors for microbial metabolism in aerobic biodegradation. Electron acceptors include oxygen, nitrate, Fe³⁺, sulfate, and carbon dioxide.

In general, if sufficient oxygen is present, aerobic biodegradation will occur first. When DO concentrations fall below approximately 0.5 mg/L (an anoxic environment), denitrification will begin if nitrate is present. After most nitrate has been consumed, Fe³⁺ reduction will begin if Fe³⁺ is present. Fe³⁺ concentrations will decrease, while Fe²⁺ concentrations will increase. After most Fe³⁺ is consumed, sulfate reduction will begin if sulfate is available. After most sulfate has been consumed, methanogenesis, which involves carbon dioxide as

an electron acceptor, begins. During methanogenesis, methane concentrations increase (Department of the Navy, 1998).

The results discussed below indicate that biodegradation, whether aerobic or anaerobic, may be occurring in the local environment around the wells that were sampled for biodegradation parameters.

3.3.3.1 Field Measured Parameters

Field pH, DO, and oxidation-reduction potential (ORP) data were collected from 29 monitoring wells using an YSI 556 water quality meter (**Table IV**). The meter was inserted into grab water samples, collected from the vacuum truck intake during well purging. Wells MW-104A, MW-106A, W-9, and W-10 did not generate enough groundwater volume during purging sufficient enough to collect water quality parameters during sampling. On the day that wells MW-703, MW-704, and MW-705 were purged and sampled, the monitoring device (YSI 556) experienced technical problems and could not be used.

- **pH** This parameter quantifies the acidity or alkalinity of a solution. Results ranged from 7.64 to 8.62 with a few exceptions, indicating a neutral to slightly alkaline environment that is suitable for the growth of alkalophilic bacteria and microorganisms that thrive at a circumneutral pH.
- **DO** Oxygen is the preferred electron acceptor in the biodegradation of petroleum hydrocarbons. When aerobic biodegradation occurs, DO concentrations are expected to decline as microorganisms use the electron acceptor during respiration. The vacuum stinger method used to purge the wells introduces oxygen into the groundwater. Therefore, DO data is not representative of the actual oxygen content. It is likely very low in wells exhibiting higher TPH concentrations, since oxygen is the first compound used up in the biological degradation of petroleum.
- **ORP** This parameter is a measure of electron activity, which reflects the oxidizing or reducing nature of the environment. ORP values are generally negative under reducing conditions (gaining electrons) and positive under oxidizing conditions (losing electrons). Negative ORP values were observed in 19 of the 29 wells measured.

ORP values ranged from -236.7 mV in well MW-107A to 161.0 mV in Well MW-701. **Figure 8** illustrates iso-concentration contour lines for ORP.

Hydrogen sulfide (produced from the reduction of sulfate in groundwater, after oxygen is used up) was detected during purging of wells exhibiting elevated TPH concentrations and low or negative ORP values, which is consistent with our understanding of the conceptual site model, and indicate that aerobic degradation of the hydrocarbons has stalled due to dissolved oxygen limitations. It is likely that the introduction of air (via bioventing for example) will enhance the process of stimulating the aerobic degradation of the constituents of concern at the site.

3.3.4 QA/QC

Duplicate sample results are provided alongside their primary sample results in **Tables III**. The results show similar concentrations of the analytes of interest as in their respective primary samples, as would be expected for an ELAP-certified laboratory.

Trip blank samples did not indicate the presence of VOCs, which indicates proper sample storage and confirms a lack of cross-contamination during transport.

Laboratory method blanks did not indicate the presence of VOCs, which indicates that laboratory detection equipment did not exhibit cross-contamination.

Laboratory control and laboratory spike samples exhibited results within acceptable limits, indicating no matrix interference and that the detection equipment was working properly.

4.0 **SUMMARY & CONCLUSIONS**

Groundwater monitoring was performed at and in the vicinity of the former CENCO refinery in November 2012 as part of an ongoing groundwater monitoring plan intended to evaluate chemical impacts, contaminant sources, and overall groundwater quality. This groundwater monitoring event included inspecting/gauging water levels in 59 wells and collecting samples from 40 of those wells for analysis of TPHg and VOCs.

4.1 Groundwater Surface Elevations and Gradient

A horizontal groundwater gradient of approximately 0.008 ft/ft was calculated for the fourth quarter groundwater monitoring event. This is consistent with historical gradient data for the site vicinity. Averaging all the wells exhibiting measurable groundwater, elevations have decreased (although it rose in select individual wells) by approximately 1.22 feet since the previous quarter. Groundwater flows from the northeast and turns due south across the area of study, which is consistent with historical measurements. Deep-screened production wells W-7 and W-8 exhibited decreases of nearly 5 vertical feet in groundwater elevation this quarter; this is likely due to the cessation of municipal water pumping operations in near proximity of the site.

4.2 Free-Phase Petroleum Hydrocarbons

Measureable free product was identified in three wells EW-1, W-15A, and MW-708. These wells have exhibited FPPH in the past; although it first appeared in W-15A in 2011. The FPPH thickness measured in these wells (0.88, 2.47, and 0.19 feet, respectively) does not necessarily reflect FPPH actual thickness in the surrounding aquifer as fluctuations in water levels and permeability factors can influence FPPH accumulation in monitoring wells.

Murex has conducted a study to compare the characteristics (i.e., "fingerprints") of FPPH samples taken from several of the monitoring wells, including wells that do not currently contain FPPH. Samples of FPPH were collected from wells W-11, MW-503B, MW-708, EW-1, and W-15A. All the samples were then submitted for fingerprinting analysis to Zymax Forensics Laboratory in Escondido, California on September 21, 2011. The findings of this study were submitted to the RWQCB on January 25, 2012 as an addendum to the June 30, 2011 FPPH Investigation Report.

4.3 Groundwater Quality

The highest concentrations of TPHg detected during this sampling event were beneath the Coaster property and the northern and southern portions of the MSH (see **Figure 5**). The maximum concentration of TPHg was 35 mg/L in well MW-711, 14 mg/L in well MW-704,

5.1 mg/L in well W-10 and 4.5 mg/L in well W-15A. Wells MW-711 and W-15A are located south of the Coaster property.

Benzene, toluene, ethylbenzene, xylene, and other compounds associated with petroleum hydrocarbons largely mimic TPHg in their presence and relative concentrations in the areas associated with the plume. The maximum concentration of benzene was detected in well MW-711, at 6,200 μ g/L, located south of the Coaster property (see **Figure 6**). The maximum concentration of MTBE was detected in well MW-704 at 610 μ g/L, located in the central portion of the MSH (**Figure 7**) at a distance of approximately 2,000 feet. It is likely that the impacts present in well W-15A are resultant from releases other than those sourced from the refinery property.

Changes in the petroleum hydrocarbon plume may be reflective of the recent increases in groundwater elevation which have exhibited their fifth increase after a long period of steep decline. Murex will continue to monitor the hydrocarbon plume within the well network and provided regular updates to the RWQCB through the monitoring and reporting program.

4.3.1 Off-Site Sources of Petroleum Hydrocarbons

In addition to historic releases from the Site, data collected from the monitoring well network (see **Figures 4, 5, and 6**) exhibits evidence of other sources. Some observations that would support the presence of alternative sources are: (1) the comparatively clean appearance of FPPH in well W-15A versus the weathered or cloudy appearance of FPPH in wells EW-1, MW-503B, and MW-708; (2) the historical presence of FPPH in wells EW-1 and W-3A, which are located east and cross-gradient of the former refinery.

In connection with the study of the FPPH samples submitted for fingerprinting analysis, Murex is also reviewing literature and maps to identify other possible sources of petroleum hydrocarbons in the vicinity of the Site as well as to distinguish Site-related contamination from contamination originating elsewhere.

4.3.2 Discussion of Solvent Detections

Data collected from the monitoring well network (see **Table III**) exhibits the presence of substances not linked to historic releases at the Site, including chlorinated solvents. The following observations were made regarding the additional detected chemicals in groundwater within the Powerine monitoring well network.

During this sampling event, elevated PCE and TCE concentrations (i.e., between 81 and 130 μ g/L) were measured in wells W-14B and MW-710. This is consistent with previously measured high values from MW-710. Levels of PCE and TCE found in W-14B increased for the past several monitoring periods since January 2011. Historically, these compounds were also detected in wells MW-107A, MW-701, and MW-14C.

Cis-1,2-DCE and trans-1,2-DCE were found in 13 of the wells sampled at concentrations consistent with historical levels. Well W-16B exhibited a decreased concentration of cis-1,2-DCE (4.2 μ g/L) and an increased concentration of trans-1,2-DCE (6.6 μ g/L) in the fourth quarter.

1,1-DCE was detected at an elevated concentration of 86 μ g/L in well MW-710 and 31 μ g/L in well W-14B. Historically, wells W-14B and W-14C also exhibited elevated concentrations of these constituents.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

4.3.3 Assessment of Vapor Risk from Groundwater Plume

At the direction of the DTSC, Murex has conducted an off-site soil gas sampling study. The results, presented to the RWQCB and DTSC in the November 7, 2011 *Off-Site Soil Gas Survey Report*, indicate that the petroleum hydrocarbon plume does not pose a threat to off-site receptors as a result of volatilization from groundwater.

4.4 Biodegradation

Intrinsic biodegradation continues to be viable, in at least some areas of the site and vicinity, based on nitrate, sulfate, Fe²⁺, methane, alkalinity, and ORP results from previous sampling events conducted at the site. Oxygen has been depleted, as evident by the presence of hydrogen sulfide in the deep subsurface (sulfate reduction reactions result in the formation of hydrogen sulfide). Since the main limiting factor for biodegradation of petroleum hydrocarbons is oxygen, the mechanical introduction of oxygen could stimulate aerobic biodegradation of the VOCs present in groundwater.

Murex conducted pilot testing at the site to determine the appropriate remedial technology which will effectively enhance biodegradation of the constituents of concern and reduce the extent of groundwater contamination. Based on the results and data collected during pilot testing, it appears that a combination of remedial technologies would

be suited for the site. The results and conclusions of this study were submitted to the RWQCB in the Pilot Testing Report dated November 21, 2011.

5.0 REFERENCES

- 1. Arcadis. 2009. Second Quarter Groundwater Monitoring Report, Former CENCO Refinery, 12345 Lakeland Road, Santa Fe Springs, California. Prepared for Isola Law Group, LLP. June 25.
- Dan Herlihy Environmental Services. 2006. Letter from Dan Herlihy, Principal, to Mr. David Isola, Esq., Isola & Ruiz, LLC, re: Recommendations to Fill Data Gap and Modify Shallow Well Design & Sampling, Community Development Commission of the City of Santa Fe Springs v. Powerine Oil Company et al., Case No. VC039820. September 8.
- 3. Department of the Navy. 1998. *Technical Guidelines for Evaluating Monitored Natural Attenuation of Petroleum Hydrocarbons and Chlorinated Solvents in Ground Water at Naval and Marine Corps Facilities*. September.
- 4. Gustafson, J.B., Tell, J.G., Orem, D., 1996. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG): Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Volume 3.
- 5. Haley & Aldrich, Inc. 2004. *Draft 2004 Semi-Annual Groundwater Monitoring Report, CENCO Refinery, Santa Fe Springs, California*. October 18.
- 6. Haley & Aldrich, Inc. 2005. *Additional Site Investigation Work Plan, CENCO Refining Company*. May 9.

6.0 CLOSING

I certify under penalty of law that this document and all enclosures were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained herein is, to the best of my knowledge and belief, true, accurate and complete, however, is reliant upon public agency records, which could be incomplete or inaccurate beyond our control.

Should you have any questions or concerns regarding the material herein, please do not hesitate to contact the undersigned at (714) 508-0800.

Sincerely,

MUREX ENVIRONMENTAL, INC

Jeremy R Squire, P.E

Senior Engineer

Table I
Well Construction Details
Former CENCO Refinery
Santa Fe Springs, CA

W-IIID	Ground By																					
W-II ID	Date By Surfac			estion				croon			Dont	Completion	n Data				Flouret	ion (ft)				
				ration	Hole Diameter	Casing	3	creen				h (ft)						ion (ft)			Location	Reference(s) ¹
Well ID	Date	Ву	Surface	Top of Casing	(in)	Diameter (in)	Slot	Length	San	d Pack	Sle	otted	Total	Depth	San	d Pack	SI	otted	Total	Depth		
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
Groundwater M	onitoring Wells			_		_									_							
EW-1	6/11/1905	Emcon	146.85	146.85	-	4	-	-	-	-	-	-	113.5	-	-	-	-	-	-	-	Walker	Versar (2000)
MW-101	8/28/1985	IT	145.19	138.00	12	4	-	20	69.5	90	70	90	90	95	66	45	65	45	45	40	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-103	8/30/1985	IT	137.18	139.36	12	4	-	20	-	-	79	99	99	99.5	-	-	58	38	-	37	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104	8/24/1985	IT	-	-	12	4	-	20	-	-	76.5	96.5	97	99	-	-	66	46	-	43	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104A	6/1999	Versar	142.38	144.13	-	4	-	-	-	-	65	100	100	-	-	-	-	-	-	-	Refinery	Versar (2000); measured well depth
MW-105	12/1995	TriHydro		141.16	-	4	-	-	-	-	68	98	98	100	-	-	-	-	-	39	Refinery	Versar (2000); measured well depth
MW-106	12/1995	TriHydro	-	-	-	4	-	-	-	-	74	104	106.45	106	-	-	-	-	42	42	Bloomfield	Versar (2000)
MW-106A	2/20/2006	N&M	152.92	152.81	8	4	0.02	27	82	110	83	110	110	110	70	42	69	42	42	42	Bloomfield	Well completion report
MW-107	12/1995	TriHydro	-	-	-	4	-	-	-	-	75	105	107.55	108	-	-	-	-	41	41	Bloomfield	Versar (2000)
MW-107A	2/20/2006	N&M	147.37	147.02	8	4	0.02	27	82	110	83	110	110	110	64	36	63	36	36	36	Bloomfield	Well completion report
MW-201	9/10/1985	IT	134.86	135.65	12	4	-	30	66	103	72	102	102	103	67	30	61	31	31	30	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-202	9/23/1985	IT	139.00*	140.62	16	4	-	30	58	105	63	93	93	105	70	23	65	35	35	23	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-203	9/13/1985	IT	144.08	143.71	12	4	-	30	64.7	107	77	107	107	119	78	36	66	36	36	24	Bloomfield	IT (1986); Versar (2000); ARCADIS (2003)
MW-204	9/19/1985	IT	141.15	142.90	12	4	-	30	67.5	105	73.3	103.3	103.3	105	73	35	67	37	37	35	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-205	9/14/1985	IT	140.00*	140.09	12	4	-	30	65.5	103	69.5	99.5	99.5	104.5	73	35	69	39	39	34	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-206 ²	9/18/1985	IT	-	-	-	4	-	30	62.5	104	71	101	101	104	67	26	59	29	29	26	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501	6/9/1986	IT	-	-	-	4	-	30	-	-	71	101	101	107	-	-	58	28	-	22	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501A	3/1999	ATC	131.26	130.89	-	4	-	-	-	-	75	95	95	95	-	-	-	-	-	35	Lakeland	Versar (2000); measured well depth
MW-502	6/11/1986	IT	131.88	131.00	-	4	-	30	-	-	74	104	104	104	-	-	54	24	-	24	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503	6/13/1986	IT	-	-	-	4	-	30	-	-	80.5	110.5	110.5	111	-	-	51	21	-	20	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503B	1/1999	Versar	133.03	132.66	-	4	-	-	-	-	69	109	109	109	-	-	-	-	-	21	Lakeland	Versar (2000); measured well depth
MW-504	6/18/1986	IT	-	137.18	-	4	-	50	-	-	58	118	95.76	118	-	-	77	17	-	17	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-600	8/15/1990	ENSR	-	-	-	4	-	30	-	-	78	108	108	110	-	-	42	12	-	10	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-600A	6/1999	Versar	123.28	124.26	-	4	-	-	-	-	-	-	92.7	100	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-601	8/17/1990	ENSR	-	-	-	4	-	30	-	-	85	115	115	117	-	-	40	10	-	8	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-601A	6/1999	Versar			-	4	-	-	-	-	65	100	100	100	-	-	-	-	-	27	MSH	Versar (2000); measured well depth
MW-603	12/1995	TriHydro	121.40	120.95	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
MW-604	12/1995	TriHydro	140.52	140.07	-	4	-	-	-	-	73	103	103	103	-	-	-	-	-	35	MSH	Versar (2000); measured well depth
MW-605	12/1995	TriHydro	117.40	116.82	-	4	-	-	-	-	65	95	95	95	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-606	12/1995	TriHydro	116.90	116.06	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	14	MSH	Versar (2000); measured well depth
MW-607	12/1995	TriHydro	128.92	128.28	-	4	-	-	_	-	77	107	107	107	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
W-1	12/1995	TRC	145.19	144.81	-	4	-	-	-	-	70	129	129	130	-	-	-	-	-	13	Walker	IT (1986); Versar (2000)
W-2 ²	12/1995	TRC	-	-	-	4	-	-	-	-	84	129	129	129	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3 ²	12/1995	TRC	-	-	-	4	-	-	-	-	82	122	122	124	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3A	-	-	137.18	136.79	-	4	_	-	_	-	-	_	111.52	115	-	-	_	_	_	21	Walker	Versar (2000)
W-4	12/1995	TRC	143.18	142.56	-	4	_	-	-	-	79	129	130	_	-	-	-	-	_	-	Walker	IT (1986); Versar (2000)
W-9	8/22/2006	TA	140.37	139.84	8	2	0.01	35	73	111	75	110	110	120.5	66	28	64	29	29	19	Refinery	ARCADIS BBL (2006)
W-10	8/21/2006	TA	141.39	140.71	8	2	0.01	35	73	111	75	110	110	130	67	29	65	30	30	10	Refinery	ARCADIS BBL (2006)
W-11	8/25/2006	TA	141.96	142.10	8	2	0.01	35	73	111	75	110	110	119	68	30	66	31	31	22	Refinery	ARCADIS BBL (2006)
W-12	8/23/2006	TA	142.93	145.15	8	2	0.01	35	75	114	75	114	114	120.5	69	30	69	30	30	24	Refinery	ARCADIS BBL (2006)

Table I Well Construction Details Former CENCO Refinery Santa Fe Springs, CA

	Wel	l Installatio	n									Completion	n Data									
			Elev	ation			S	creen			Dept	h (ft)					Elevat	ion (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter (in)	Casing Diameter (in)	Slot	Length	San	d Pack	Slo	otted	Total	Depth	San	d Pack	Slo	otted	Total	Depth	Location	Reference(s) ¹
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
W-14A	. /20 /2000		115.23	114.71	9	2	0.02	45	67	112	67	112	112	200	48	3	48	3	3	-85		
W-14B	1/22/2008- 1/30/2008	Arcadis	115.00*	114.78	9	2	0.02	10	157	167	157	167	167	200	-42	-52	-42	-52	-52	-85	MSH	ARCADIS (2008)
W-14C	, ,		115.00*	114.78	9	2	0.02	10	185	195	185	195	195	200	-70	-80	-70	-80	-80	-85		
W-15A	11/27/2007		127.91	127.59	10	2	0.02	45	78	126	80	125	125	200	50	2	48	3	3	-72		
W-15B	11/27/2007- 12/10/2007	Arcadis	128.00*	127.61	10	2	0.02	10	143	156	145	155	155	200	-15	-28	-17	-27	-27	-72	MSH	ARCADIS (2008)
W-15C			128.00*	127.59	10	2	0.02	10	188	200	190	200	200	200	-60	-72	-62	-72	-72	-72		
W-16A	10/24/2007-		147.89	147.60	10	2	0.02	45	76	125	78	123	123	200	72	23	70	25	25	-52		
W-16B	10/30/2007	Arcadis	148.00*	147.68	10	2	0.02	10	143	156	152	162	162	200	5	-8	-4	-14	-14	-52	Walker	ARCADIS (2008)
W-16C			148.00*	147.67	10	2	0.02	10	184	200	186	196	196	200	-36	-52	-38	-48	-48	-52		
W-17A	1/31/2008-		141.60	141.38	9	2	0.02	45	63	108	63	108	108	200	78	33	78	33	33	-59		
W-17B	2/8/2008	Arcadis	142.00*	141.37	9	2	0.02	10	159	169	159	169	169	200	-18	-28	-18	-28	-28	-59	Refinery	ARCADIS (2008)
W-17C			142.00*	141.38	9	2	0.02	10	190	200	190	200	200	200	-49	-59	-49	-59	-59	-59		
MW-701	12/6/2010	Murex	136.87	139.48	12	4	0.02	50	77	130	80	130	130	130	59.87	6.87	56.87	6.87	6.87	6.87	Refinery	Murex (2011)
MW-702	12/15/2010	Murex	140.90	140.12	12	4	0.02	50	77	130	80	130	130	130	63.90	10.90	60.90	10.90	10.90	10.90	Refinery	Murex (2011)
MW-703	12/10/2010	Murex	134.73	137.23	12	4	0.02	50	77	130	80	130	130	130	57.73	4.73	54.73	4.73	4.73	4.73	Refinery	Murex (2011)
MW-704	12/14/2010	Murex	137.93	137.66	12	4	0.02	50	77	130	80	130	130	130	60.93	7.93	57.93	7.93	7.93	7.93	Refinery	Murex (2011)
MW-705	12/13/2010	Murex	139.16	141.94	12	4	0.02	50	77	130	80	130	130	130	62.16	9.16	59.16	9.16	9.16	9.16	Refinery	Murex (2011)
MW-706	12/9/2010	Murex	139.68	139.30	12	4	0.02	50	77	130	80	130	130	130	62.68	9.68	59.68	9.68	9.68	9.68	Refinery	Murex (2011)
MW-707	12/23/2010	Murex	128.86	128.43	12	4	0.02	50	77	130	80	130	130	130	51.86	-1.14	48.86	-1.14	-1.14	-1.14	Getty Drive	Murex (2011)
MW-708	1/12/2011	Murex	126.73	126.26	12	4	0.02	50	77	130	80	130	130	130	49.73	-3.27	46.73	-3.27	-3.27	-3.27	MSH	Murex (2011)
MW-709	1/26/2011	Murex	140.48	139.78	12	4	0.02	50	77	130	80	130	130	130	63.48	10.48	60.48	10.48	10.48	10.48	MSH	Murex (2011)
MW-710	1/13/2011	Murex	122.15	121.99	12	4	0.02	50	77	130	80	130	130	130	45.15	-7.85	42.15	-7.85	-7.85	-7.85	MSH	Murex (2011)
MW-711	1/17/2011	Murex	128.09	127.84	12	4	0.02	50	77	130	80	130	130	130	51.09	-1.91	48.09	-1.91	-1.91	-1.91	MSH	Murex (2011)
MW-712	1/24/2011	Murex	123.57	123.31	12	4	0.02	50	77	130	80	130	130	130	46.57	-6.43	43.57	-6.43	-6.43	-6.43	MSH	Murex (2011)
MW-713	1/19/2011	Murex	128.42	128.15	12	4	0.02	50	77	130	80	130	130	130	51.42	-1.58	48.42	-1.58	-1.58	-1.58	MSH	Murex (2011)
MW-714	1/20/2011	Murex	129.07	128.87	12	4	0.02	50	77	130	80	130	143	130	52.07	-0.93	49.07	-0.93	-13.93	-0.93	MSH	Murex (2011)
MW-715	1/27/2011	Murex	116.66	116.22	12	4	0.02	50	77	130	80	130	130	130	39.66	-13.34	36.66	-13.34	-13.34	-13.34	MSH	Murex (2011)
Former Groun	dwater Production V	Wells		T	1	1	1				1		1		1	1	1		1		,	
					-	-	-	80	-	-	450	530	690	-	-	-	-	-	-	-	Refinery	
W-7	-		-	141.97	-	-	-	90	-	-	600	690	-	-	-	-	-	-	-	-	Refinery	IT (1986)
W-8	-		-	141.11	-	-	-	-	-	-	-	-	994	-	-	-	-	-	-	-	Refinery	

NOTES:

¹Sources: IT, 1986; Versar, 2000; Arcadis, 2003, 2006, 2008, and 2009; Dan Herlihy Environmental Services, 2006 (as shown).

ft Feet

in Inches

MSH Metropolitan State Hospital Property

amsl Above mean sea level

TOC Top of casing

Value retrieved from Google Earth

²Well abandoned

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 4Q2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
		(ft)	(ft)	(ft)	(ft)	(ft amsl)	(ft amsl)
EW-1	10/26/2012	113.00	106.40	105.52	0.88	146.85	41.15
W-1	10/26/2012	129.61	108.91			144.81	35.90
W-3A	10/26/2012	111.73	DRY			136.79	NA
W-4	10/26/2012	129.71	110.00			142.56	32.56
W-7	10/26/2012	NM	94.35			141.97	47.62
W-8	10/26/2012	NM	78.72			141.11	62.39
W-9	10/26/2012	110.37	90.81			139.84	49.03
W-10	10/26/2012	110.21	96.62			140.71	44.09
W-11	10/26/2012	112.61	97.43			142.10	44.67
W-12	10/26/2012	116.10	102.59			145.15	42.56
W-14 A	10/26/2012	112.00	94.32			114.71	20.39
W-14 B	10/26/2012	167.00	93.52			114.78	21.26
W-14 C	10/26/2012	195.00	93.75			114.78	21.03
W-15 A	10/26/2012	125.70	113.38	110.91	2.47	127.59	16.19
W-15 B	10/26/2012	155.60	111.40			127.61	16.21
W-15 C	10/26/2012	197.34	112.02			127.59	15.57
W-16 A	10/26/2012	123.12	112.10			147.60	35.50
W-16 B	10/26/2012	160.25	120.07			147.68	27.61
W-16 C	10/26/2012	196.30	119.84			147.67	27.83
W-17 A	10/26/2012	108.30	96.07			141.38	45.31
W-17 B	10/26/2012	169.60	109.06			141.37	32.31
W-17 C	10/26/2012	200.00	109.12			141.38	32.26
MW-101	10/26/2012	90.72	DRY			138.00	NA
MW-103	10/26/2012	94.70	DRY			139.36	NA
MW-104A	10/26/2012	100.08	92.89			144.13	51.24
MW-105	10/26/2012	100.47	DRY			141.16	NA
MW-106A	10/26/2012	110.00	104.03			152.81	48.78
MW-107A	10/26/2012	109.49	104.05			147.02	42.97
MW-201	10/26/2012	101.60	DRY			135.65	NA
MW-202	10/26/2012	92.55	DRY			140.62	NA
MW-203	10/26/2012	102.30	DRY			143.71	NA
MW-204	10/26/2012	103.10	DRY			142.90	NA
MW-205	10/26/2012	98.27	DRY			140.09	NA
MW-501A	10/26/2012	93.27	DRY			130.89	NA
MW-502	10/26/2012	100.59	DRY			131.00	NA
MW-503B	10/26/2012	108.67	100.59			132.66	32.07
MW-504	10/26/2012	95.76	DRY			137.18	NA
MW-600A	10/26/2012	92.70	DRY			124.26	NA
MW-601A	10/26/2012	89.90	DRY			126.53	NA
MW-603	10/26/2012	97.60	DRY			120.95	NA
MW-604	10/26/2012	103.20	DRY			140.07	NA
MW-605	10/26/2012	93.98	DRY			116.82	NA
MW-606	10/26/2012	99.05	DRY			116.06	NA
MW-607	10/26/2012	107.05	DRY			128.28	NA 10.07
MW-701	10/26/2012	130.00	98.51			139.48	40.97
MW-702	10/26/2012	130.00	98.26			140.12	41.86
MW-703	10/26/2012	130.00	99.96			137.23	37.27
MW-704	10/26/2012	130.00	101.79			137.66	35.87
MW-705	10/26/2012	130.00	102.94			141.94	39.00
MW-706	10/26/2012	130.00	99.47			139.30	39.83
MW-707	10/26/2012	130.00	97.49		2.15	128.43	30.94
MW-708	10/26/2012	130.00	96.88	96.69	0.19	126.26	29.53
MW-709	10/26/2012	130.00	109.15			139.78	30.63

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 4Q2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
MW-710	10/26/2012	130.00	95.32			121.99	26.67
MW-711	10/26/2012	130.00	102.17			127.84	25.67
MW-712	10/26/2012	130.00	99.19			123.31	24.12
MW-713	10/26/2012	130.00	104.81			128.15	23.34
MW-714	10/26/2012	142.00	105.70			128.87	23.17
MW-715	10/26/2012	134.00	97.65			116.22	18.57

NOTES:

ft Feet

FPPH Free-phase petroleum hydrocarbons

amsl Above mean sea level

NM Not measured, inaccessible

NA Not available/applicable

Table III Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA 4Q2012

Wind												12012										
Section Sect							E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB		TCE	· · · · · · · · · · · · · · · · · · ·	c1,2-DCE	1,1-DCE	,	· ·	
The column The		The state of the s		9800																		
		-																110			ł —	
1964 1966		,		E000						∠E0		150	∠E0	∠ E0								
Part Med 70,0000 Part Med	h	The state of the s															1				ł —	
1906 1907		-																			ł —	
		-					1															
100 100	EW-1	UG/L	7/31/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
Part 1001	EW-1	UG/L	2/6/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
Port 100,		-																				
						+	1															
Fig.								16	-1												ł —	
West	-	The state of the s						1													ł —	
Part 10		-																			ł —	
Fig. 1	h						1	1													t	
West	EW-1	The state of the s		4100	73		4.9	<4	<4	<10	31		0.48	<4	<4		14	9.8			<4	2.6
Fig. 196. 441907 200	EW-1	UG/L	2/3/2011	4500	20	15	27	13	<0.50	<1.0	<10	42	<1.0	<1.0	<1.0	13	5.9	4.0	<1.0	<1.0	<0.50	<1.0
		,																				
Mariphon																	1					<1.0
Memory M	EW-1	UG/L	11/13/2012	2900	<0.50	<0.50	5.8	1.4	<0.50	<1.0	<10	120	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
Memory M	MW-104A	HC/I	7/19/1999	<500	<0.5	<i>c</i> 1	-1	 		<i>2</i> 1		<10	~1	<i>2</i> 1	<i>c</i> 1	+	<1	5.6		<1	1.2	<i>د</i> ٥
May		-					1															
Weight W	h	-				+	1						1			†	1				ł —	
May 1846 1866 1867 1867 1869 1	-	The state of the s					1						1				1				ł —	
	MW-104A	UG/L	7/25/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	3.9		<1	<0.5	<0.5
Marine M	MW-104A	UG/L	5/7/2002	100	<0.5	<1	<1			<1	31000	<10	<1	<1	<1		<1	4.3		<1	<0.5	<0.5
MAY-1048 UGA	-						1					<10									ł —	<0.5
MW-194A UGA 215/2006 650 C1 C5 C5 C5 C5 C5 C5 C5							1										1				ł —	
Wilson W		-					1	1													ł —	
MW-196A Ug/L M/8/2007 35 42 0.37 42 42 42 45 340 45 42 42 42 42 42 42 42								1								+					ł —	
MW 104A UGA MR 2000 GO G G G G G G G G	-	The state of the s					1	1									1				ł —	
MW-104A UGA 11/5/7077 40 40.36 40.36 40.35 40.66 40.31 40.31 40.41 40.33 40.36 40.32 40.71 44 40.77 40.28 40.38 40.66 40.77 40.88		The state of the s						1													ł —	
MW-104A US/L 1/15/2009 46 -2 -2 -2 -2 -1 -2 -2 -5 -33 -5 -0.55 -2 -2 -2 -2 -5 -5 -2 -2	MW-104A	UG/L	11/5/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	81	<0.41	<0.23	<0.26	<0.32		0.71	4		<0.27	<0.28	<0.3
MW-104A UG/L 4/2/2009 C50 C2 C2 C2 C2 C3 C5 S8 C5 C2 C2 C2 C2 C3 C4 C4 C4 C4 C5 C5 C5 S8 C5 C4 C4 C4 C4 C4 C4 C4	MW-104A	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	71	<5	<2	<2	<2		0.91	5.2		<2	<2	<5
MW-100A UG/L 3/7/2010 C50	-	The state of the s					1	1														
MW-100A UG/L 11/10/201 S0 S0 S0 S0 S0 S0 S0		-						<2					1				1					
MW-104A USA 11/3/2010 S9 C9.59 C9.	h						1						1				1				ł —	
MW-108A UG/A Z/Z/2011 S0 C0.50 C0.	-	The state of the s				+		<1.0					1			<1.0	1		<1.0		ł —	
MW-100A UG/L 2/2/2011 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0		The state of the s						1								+	1				ł —	
MW-104A UG/L 11/10/2011 <50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 < 40.50 <	-	-					1															<10
MW-104A UG/L 11/10/2011 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	MW-104A	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<10	6.4	<1.0	<1.0	<0.50	<10
MW-104A UG/L 1/1/0/2011 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	MW-104A	UG/L	8/24/2011			<0.50	<0.50	<1.0		<1.0		<1.0	<1.0	<1.0					<1.0	<1.0		
MW-106A UG/L Z/9/2012 S50	-					+	1	1					1			+					ł —	<10
MW-104A UG/L 5/9/2012 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0							1	1					1									<10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						1	1					1			+	1				ł —	
MW-104A UG/L 11/6/2012 < 50 < 0.50	-						1	1					1			+	1				ł —	
MW-106A UG/L 8/2/006 310 2.6 <2 <2 <2 <2 <2 <5 <50 <50 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2							1	1									1					
MW-106A UG/L 11/9/2006 82 <2 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	10-1/1	00/1	11,0,2012	.50	.0.50	.5.50	.5.50	11.0	-0.50	11.0	.10	-1.0	11.0	12.0	-1.0	-1.0	1.10	/	-1.0	11.0	.5.50	0
MW-106A UG/L 2/8/2007 270 2.6 <2 <2 <2 <5 <50 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	MW-106A	UG/L	8/2/2006	310	2.6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		21	13		<2	<2	10
MW-106A UG/L 5/10/2007 210 1.5 <2 0.28 <2 <5 20 <5 <2 <2 <2 <7.9 MW-106A UG/L 8/9/2007 270 1.6 <2	-			82	<2		<2	<2	<2	<5	<50	<5			<2		17	14		<2		
MW-106A UG/L 8/9/2007 270 1.6 <2 0.6 <2 <5 19 0.69 <2 <2 <2 <1	MW-106A	UG/L		270	2.6			<2		<5											<2	
MW-106A UG/L 11/7/2007 240 1.4 <0.36 0.84 <0.6 <0.3 <0.32 20 1.6 <0.23 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.23 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.32 <0.26 <0.23 <0.26 <0.22 <0.26 <0.27 <0.26 <0.27 <0.26 <0.27 <0.26 <0.27 <0.27 <0.27 <0.28 <0.29 <0.27 <0.28 <0.29 <0.21 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20<	h							1					1			1					ł —	
MW-106A UG/L 2/5/2008 220 1.6 <2 0.42 <2 <5 16 1.8 <2 <2 <2 <2 10 MW-106A UG/L 1/19/2009 220 0.46 <2	-						1	1					1			1					ł —	
MW-106A UG/L 1/19/2009 220 0.46 <2 <2 <2 <5 17 <5 <2 <2 <2 <2 <2 <3 <5 <2 <2 <2 <2 <5 18 0.93 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>ł —</td> <td></td>								1								+					ł —	
MW-106A UG/L 4/23/2009 290 1.9 <2 3.7 <2 <2 <5 18 0.93 <2 <2 <2 <2 10 MW-106A UG/L 3/5/2010 590 8.4 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <2.0 3.5 <1.0 <0.50 <1.0 MW-106A UG/L 5/13/2010 460 8.6 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0<							1	1								+					ł —	
MW-106A UG/L 3/5/2010 590 8.4 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	h							1					1			+					ł —	
MW-106A UG/L 5/13/2010 460 8.6 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	-						1	`~					1			†					ł —	<10
MW-106A UG/L 8/6/2010 450 12 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 3.5 1.0 1.2 <0.50 25	-						1									1					ł —	
MW-106A UG/J 11/4/2010 630 0.64 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.													1								ł —	
200. 509. 22/1/2020 500 50.00 50	MW-106A	UG/L	11/4/2010	630	0.64	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.5	<1.0	<1.0	<0.50	8.8

Location	Unit	Date	TPH-g	В	Т	F	m/p-X	о-Х	МТВЕ	ТВА	NAP	1.2.4-TMB	1.3.5-TMB	PCE	TCE	t1,2-DCE	c1.2-DCE	1.1-DCE	1,1-DCA	1.2-DCA	VC
MW-106A	UG/L	2/3/2011	570	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-106A	UG/L	4/19/2011	480	0.63	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0	<1.0	<1.0	<0.50	6.9
MW-106A	UG/L	8/25/2011	540	0.51	<0.50	<0.50	<1.0	<0.50	<1.0	26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
MW-106A	UG/L	11/14/2011	440	0.87	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
MW-106A	UG/L	2/3/2012	440	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	11
MW-106A MW-106A	UG/L UG/L	5/8/2012 8/24/2012	630 470	7.1 4.8	<0.50 <0.50	0.87 <0.50	1.5 <1.0	<0.50 <0.50	<1.0 <1.0	13 <10	7.2 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	23 11
MW-106A	UG/L	11/6/2012	610	6.9	<0.50	0.83	<1.0	<0.50	<1.0	<10	1.5	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	78
WW 100A	00/1	11/0/2012	010	0.5	10.50	0.03	1.0	10.50	11.0	110	1.5	11.0	1.0	\1.0	11.0	110	11.0	1.0	11.0	10.50	76
MW-107A	UG/L	8/2/2006	770	3.7	<2	<2	3.4	<2	<5	<50	<5	<2	<2	<2		2.4	3.9		<2	<2	<5
MW-107A	UG/L	11/9/2006	780	24	<2	4.7	9.1	<2	<5	<50	<5	<2	<2	<2		5.3	6.2		<2	<2	<5
MW-107A	UG/L	2/8/2007	500	80	<2	21	25	<2	<5	<50	7.4	<2	<2	<2		7.4	9.6		<2	<2	<5
MW-107A	UG/L	5/10/2007	670	42	1	14	17	<2	<5	21	6	<2	0.29	<2		6	6.6		<2	<2	2
MW-107A	UG/L	8/9/2007	1000	61	2	15	41	<2	<5	18	8.5	<2	0.33	<2		9.5	8.8		0.31	<2	2.3
MW-107A MW-107A	UG/L UG/L	11/7/2007 2/5/2008	1500 2800	44 19	4 2	16 3	26 12	<0.3 <2	<0.32 <5	35 37	3.9	<0.23 <2	0.49	<0.32 <2		9.4 9.2	6.4 5.6		0.3 0.29	<0 28 <2	4.4 5
MW-107A	UG/L	1/19/2009	1100	13	19	1.5	9.9	0.43	<5	66	1.1	<2	0.38	<2		7.3	6.8		<2	<2	2
MW-107A	UG/L	1/19/2009	1200	12	19	1.6	9.6	0.38	<5	62	1.3	<2	0.27	<2		7.5	7.2		<2	<2	1.8
MW-107A	UG/L	4/23/2009	1300	74	1.1	13	94	0.47	<5	67	6.6	3.2	2.8	<2		10	8.5		<2	<2	1.3
MW-107A	UG/L	4/23/2009	2400	79	12	13	91	0.47	<5	66	7.5	3	2.7	<2		11	9.4		<2	<2	1.3
MW-107A	UG/L	3/5/2010	1100	17	0.68	1.6		<0.50	<1.0	<10	6.0	<1.0	<1.0	<1.0		7.6	6.8		<1.0	<0.50	<1.0
MW-107A	UG/L	3/5/2010	1300	16	0.66	1.7		<0.50	<1.0	<10	5.6	<1.0	<1.0	<1.0		7.4	6.4		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1500	7.6	11	4.1		2.0	4.7	<10	3.3	2.0	<1.0	<1.0		4.7	4.8		<1.0	<0.50	<1.0
MW-107A MW-107A	UG/L UG/L	5/13/2010 8/6/2010	1100 1300	8.8 120	11 150	4.2 39		<0.50 1.3	<1.0 <1.0	<10 <10	<1.0 24	<1.0 1.9	<1.0 <1.0	<1.0 <1.0		5.9 7.5	5.9 10		<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-107A	UG/L	8/6/2010	1300	120	160	39		1.3	<1.0	<10	29	1.9	<10	<1.0		7.0	9.5		<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1400	39	11	16	29	<0.50	<1.0	<10	4.1	<1.0	<10	<1.0	7 5	5.8	7.7	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1600	36	10	14	26	<0.50	<1.0	<10	4.2	<1.0	<10	<1.0	7.1	5.1	6.9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	2/3/2011	740	4.1	2 2	3.2	14	<0.50	<1.0	<10	1.2	<1.0	<1.0	<1.0	3 3	2.4	3.2	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	4/19/2011	1200	2.4	0.90	1.2	4.7	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.4	3.6	5.0	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	4/19/2011	1200	2.6	0.99	1.2	5.2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5 9	4.2	5.9	<1.0	<1.0	<0.50	<1.0
MW-107A MW-107A	UG/L UG/L	8/25/2011 8/25/2011	590 480	0.95 0.84	<0.50 <0.50	<0.50 <0.50	1.8 1.4	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.4 1 9	1.7 1.4	3.4 3.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
MW-107A	UG/L	11/14/2011	550	1.0	<0.50	<0.50	1.6	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2 0	<1.0	4.8	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	1/31/2012	500	0.97	0.54	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.6	2.6	7.8	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	5/8/2012	710	0.78	<0.50	<0.50	<1.0	<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0	1.7	1.6	3.4	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	8/24/2012	720	1.0	<0.50	<0.50	<1.0	<0.50	<1.0	11	<1.0	<1.0	<1.0	<1.0	2.5	1.8	3.4	<1.0	<1.0	<0.50	<10
MW-107A	UG/L	11/6/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
NAVA (502 D	110/1	2/0/1000	10000	070	450	420					450	450	150	4F0		150	110		4F.O	450	-100
MW-503B MW-503B	UG/L UG/L	2/9/1999 7/19/1999	10000 7800	970 630	<50 <20	420 540			<20		<50 <200	<50 <20	<50 <20	<50 <20		150 250	110 180		<50 <20	<50 <10	<100 <10
MW-503B	UG/L	1/14/2000	14000	1000	32	870			<20		<200	<20	<20	<20		200	210		<20	<10	<10
MW-503B	UG/L	8/4/2000	5600	610	19	500			<10		23	<10	<10	<10		160	140		<10	<5	<5
MW-503B	UG/L	2/6/2001	5800	250	<20	320			<20		<200	<20	<20	<20		150	84		<20	<10	<10
MW-503B	UG/L	7/25/2001	5700	280	<50	230			<50		<500	<50	<50	<50		57	<50		<50	<25	<25
MW-503B	UG/L	5/9/2002	4500	81	3 5	77			<2	<20000	26	2.5	2.2	<2		23	23		<2	<1	7.7
MW-503B	UG/L	9/26/2002	3300	36	9.6	140	42	.0.5	<1	<10000	48	2.5	3.7	<1		16	18		<1	<0.5	10
MW-503B MW-503B	UG/L UG/L	7/1/2004 10/5/2005	5900 5400	160 1100	37 <20	89 73	42 38	<0.5 <20	<5 <20	<100 <200	42 <200	3J <20	4J <20	<5 <20		<20	3J <20		<5 <20	<5 <10	<5 <10
MW-503B	UG/L	2/14/2006	5450	331	<50	12	<250	<250	<10	<100	<50	<50 <50	<50	<50 <50		<50	<50		<50	<50	<50
MW-503B	UG/L	8/4/2006	4700	31	<2	3.5	2.1	2	7.6	<50	<5	<2	<2	<2		3.1	7.2		<2	<2	5.8
MW-503B	UG/L	11/10/2006	3500	26	<4	4.7	<4	<4	<10	<100	<10	<4	<4	<4		<4	4.9		<4	<4	<10
MW-503B	UG/L	2/9/2007	1600	59	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		2.2	11		<2	<2	5.4
MW-503B	UG/L	5/11/2007	1800	60	0.58	2.1	1	<2	1.3	<50	1.5	<2	0.61	<2		2.6	17		0.63	0.47	7.4
MW-503B	UG/L	8/10/2007	1800	80	0.62	1.7	1.1	<2	<5	<50	<5 11	0 23	0.44	<2		2	19		0.48	0.64	7.6
MW-503B MW-503B	UG/L UG/L	11/8/2007 2/11/2008	2400 2700	270 220	3.6 3.1	3.7 3.4	4.7 3.5	<1.2 <8	2.8 3.4	<20 <200	11 18	<0.92 <8	<1 <8	<1.3 <8		<1.1 1.4	15 21	+	<1.1 <8	<1.1 <8	6.3
MW-503B	UG/L	1/21/2009	6200	410	14	39	28	<10	<25	<250	36	<10	<10	<10		<10	<10		<10	<10	25
MW-503B	UG/L	4/27/2009	4000	210	11	24	18	2.9	2.2	<50	29	0 53	2.9	<2		<2	4.8		<2	1 2	25
MW-503B	UG/L	3/8/2010	2800	40	1.4	1.7		<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	6.7
MW-503B	UG/L	5/17/2010	2900	91	10	1.2		<0.50	5.1	<10	1.4	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	1.6	5.7
MW-503B	UG/L	8/9/2010	3700	270	5 3	2.4		0.65	<1.0	<10	3.4	<1.0	1.3	<1.0		<1.0	<1.0		<1.0	3.8	5.4
MW-503B	UG/L	11/8/2010	8000	690	320	180	580	170	8.2	<10	97	370	140	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	5.9
MW-503B	UG/L	11/8/2010	12000	940	7700	250 2900	800 15000	230	9.6 <1.0	<10	250	450 15000	170	<1.0	<1.0	<1.0	<1.0 2.7	<10	<1.0	2.7	6.1
MW-503B MW-503B	UG/L UG/L	2/4/2011 4/15/2011	57000 41000	1400 3400	3200	1800	15000 7200	5900 2600	9.1	<10 63	5200 370	2100	4400 640	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.4	<1 0 <1 0	<1.0 <1.0	4 8 <0 50	<1.0 8.0
MW-503B	UG/L	4/15/2011	39000	2200	2500	1400	5200	2000	9.0	64	260	1800	620	<1.0	<1.0	<1.0	1.5	<10	<1.0	<0.50	6.9
MW-503B	UG/L	8/29/2011	13000	590	270	440	1300	670	4.4	<10	200	470	150	<1.0	<1.0	<1.0	2.7	<10	<1.0	<0.50	1.1
MW-503B	UG/L	11/16/2011	6700	170	160	220	550	280	<1.0	<10	170	290	96	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0 50	<1.0
MW-503B	UG/L	1/31/2012	5400	250	120	270	580	290	<1.0	<10	150	300	57	<1.0	<1.0	<1.0	3.3	<10	<1.0	2 0	<1.0
MW-503B	UG/L	1/31/2012	5200	280	120	300	650	330	<1.0	<10	170	340	55	<1.0	<1.0	<1.0	3.5	<10	<1.0	2.1	<1.0
MW-503B	UG/L	5/8/2012	11000	920	170	820	1800	250	<1.0	<10	150	770	100	<1.0	<1.0	<1.0	6.0	<10	<1.0	0.56	2.5

Laustian	Unit	Data	TDU -	В	Т	I -	/ V	- V	МТВЕ	ТВА	NAP	1,2,4-TMB	1 2 F TN4D	PCE	TCE	#1.3 DCF	c1.2-DCE	1.1-DCE	1.1.004	4.3.004	vc
Location MW-503B	UG/L	8/30/2012	TPH-g 2000	130	19	100	m/p-X 190	o-X 39	3.9	<10	98	1,2,4-11/16	1,3,5-TMB 34	<1.0	<1.0	t1,2-DCE <1.0	<1.0	<1,1-DCE	1,1-DCA <1.0	1,2-DCA <0 50	<1.0
MW-503B	UG/L	11/5/2012	680	120	2.1	5.4	19	4.4	1.3	12	23	24	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-701	UG/L	2/4/2011	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	4.3	1.6	9.5	1.7	<1.0	<0.50	<10
MW-701 MW-701	UG/L UG/L	4/11/2011 8/30/2011	230 190	1.1 2.5	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 19	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	14 14	2.3	9.0	3.8 3.4	1.0 <1.0	<0.50 <0.50	6.0 5.2
MW-701	UG/L	8/30/2011	290	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	11	2.0	7.7	2.8	<1.0	<0.50	4.0
MW-701	UG/L	11/16/2011	310	2.5	0.62	1.4	3.5	1.8	<1.0	<10	7.6	3.4	<1.0	1.3	13	<1.0	9.2	4.6	<1.0	<0.50	<10
MW-701	UG/L	2/1/2012	300	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	8.9	3.8	14	4.3	<1.0	<0.50	<10
MW-701	UG/L	5/11/2012	260	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	15	3.8	14	<1.0	<1.0	<0.50	5.5
MW-701 MW-701	UG/L UG/L	8/31/2012 8/31/2012	350 340	0.75 0.94	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.7 2.5	16 15	2.9	18 17	5.3 5.0	<1.0 <1.0	<0.50 <0.50	3.7 3.5
MW-701	UG/L	11/13/2012	300	0.94	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.9	3.1	18	5.1	<1.0	<0.50	31
10100 701	00/2	11/13/2012	300	0.55	10.50	10.50	11.0	10.50	11.0	110	11.0	11.0	11.0	11.0	3.3	3.1	10	3.1	11.0	10.50	31
MW-702	UG/L	2/4/2011	2300	91	0.74	0.92	<1.0	<0.50	<1.0	<10	5.2	<1.0	1.5	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-702	UG/L	4/12/2011	910	6.3	<0.50	<0.50	<1.0	<0.50	<1.0	32	<1.0	<1.0	<1.0	<1.0	<1.0	<10	2.0	<1.0	1.3	<0.50	1.1
MW-702	UG/L	8/30/2011	260	15	<0.50	<0.50	<1.0	<0.50	<1.0	59	<1.0 2.9	<1.0	<1.0	<1.0	<1.0	<10	2.9	<1.0	<1.0	<0.50	1.1
MW-702 MW-702	UG/L UG/L	11/16/2011 2/9/2012	1400 1400	99 480	0.59	0.51 0.65	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	3.4	<1.0 <1.0	1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.5 <1.0	<1.0 <1.0	1.2 <1.0	<0.50 <0.50	<1 0 <1 0
MW-702	UG/L	2/9/2012	1500	470	13	0.71	<1.0	<0.50	<1.0	<10	3.3	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
MW-702	UG/L	5/11/2012	6000	2700	2.7	1.0	1.4	0.85	<1.0	<10	4.2	<1.0	4.4	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<10
MW-702	UG/L	8/31/2012	1200	88	5 9	1.8	<1.0	0.94	<1.0	<10	<1.0	<1.0	2.0	<1.0	<1.0	<10	1.2	<1.0	<1.0	<0.50	<10
MW-702	UG/L	8/31/2012	4300	72	6 2	1.9	<1.0	0.99	<1.0	<10	<1.0	<1.0	2.1	<1.0	<1.0	<10	1.3	<1.0	<1.0	<0.50	<10
MW-702	UG/L	11/13/2012	65	17	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.5	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-703	UG/L	2/4/2011	1300	33	13	5.2	2.8	<0.50	<1.0	<10	1.6	1.8	<1.0	<1.0	2.0	<10	18	3.6	<1.0	<0.50	<10
MW-703	UG/L	4/12/2011	1100	76	1.4	7.8	4.8	<0.50	1.4	<10	<1.0	2.7	<1.0	<1.0	2.6	<10	10	1.7	<1.0	<0.50	<10
MW-703	UG/L	8/30/2011	2100	170	3.4	20	8.5	<0.50	3.3	50	<1.0	2.4	1.1	<1.0	1.1	<1.0	8.7	<1.0	<1.0	<0.50	1.3
MW-703	UG/L	11/17/2011	1700	170	3 8	25	5.6	<0.50	<1.0	<10	<1.0	2.5	1.2	<1.0	<1.0	<1.0	8.8	<1.0	<1.0	<0.50	<1.0
MW-703 MW-703	UG/L UG/L	11/17/2011 2/14/2012	1400 470	150 48	3.4 0.72	1.4	4.7 1.9	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 1.1	2.2 <1.0	1.0 <1.0	<1.0 <1.0	<1.0 2.6	<1.0 1.0	9.2 28	<1.0 3.0	<1.0 <1.0	<0.50 <0.50	<1.0 2.5
MW-703	UG/L	5/11/2012	500	10	<0.50	0.55	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	14	<1.0	<1.0	<0.50	1.1
MW-703	UG/L	8/31/2012	490	39	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	12	1.5	<1.0	<0.50	1.2
MW-703	UG/L	8/31/2012	430	40	<0.50	0.52	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	13	1.5	<1.0	<0.50	1.1
MW-703	UG/L	11/14/2012	280	4.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	14	2.5	<1.0	<0.50	9.5
MW-704	UG/L	2/9/2011	27000	1800	2000	610	3600	680	210	<10	120	1200	520	<1.0	23	<1.0	2.5	<10	1.2	38	<1.0
MW-704	UG/L	2/9/2011	26000	1900	2400	620	3700	720	430	<10	96	1300	550	<1.0	<1.0	<1.0	2.5	<10	1.3	40	<1.0
MW-704	UG/L	4/13/2011	5400	170	110	200	190	68	73	<10	38	<1.0	<10	<1.0	<1.0	<1.0	5.6	<10	6.0	7 0	2.0
MW-704	UG/L	8/31/2011	11000	570	600	300	540	180	180	160	58	410	170	<1.0	<1.0	<1.0	3.8	<10	3.5	25	1.5
MW-704	UG/L	9/1/2011	2200	1200	95	92	1500	170	17	46	87	160	35	<1.0	<1.0	<1.0	6.6	<10	<1.0	<0.50	4.6
MW-704 MW-704	UG/L UG/L	11/17/2011 2/14/2012	10000 7700	550 310	430 89	420 390	520 530	180 95	190 100	<10 73	37 50	490 500	210 210	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	3.4 5.3	<1 0 <1 0	3.9 5.7	18 5 9	<1.0 3.1
MW-704	UG/L	2/14/2012	7800	320	89	410	560	96	130	80	53	510	220	<1.0	<1.0	<1.0	4.5	<10	4.9	6 2	2.3
MW-704	UG/L	5/14/2012	11000	450	250	360	520	99	130	45	61	410	150	<1.0	<1.0	<1.0	2.8	<10	3.3	12	1.2
MW-704	UG/L	5/14/2012	9000	460	260	360	530	98	140	56	77	420	150	<1.0	<1.0	<1.0	3.0	<10	3.4	12	1.2
MW-704	UG/L	9/4/2012	7800	580	30	550	760	33	44	24	3.6	670	260	<1.0	<1.0	<1.0	2.4	<10	2.6	3.4	<1.0
MW-704 MW-704	UG/L UG/L	11/14/2012 11/14/2012	8700 14000	2200 1800	150 120	1200 1200	1700 1500	170 150	610 260	60 43	150 100	1000 1100	430 440	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	27 18	2.2
	33/1	,, -014	14000	1000	120	1200	1500	150	200	7.5	100	1100	770	11.0	`1.0	11.0	10	1.10	11.0	10	2.7
MW-705	UG/L	2/4/2011	3100	450	3 5	5.1	6.4	0.54	90	94	6.7	<1.0	1.3	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<0.50	<10
MW-705	UG/L	4/12/2011	930	55	0.87	1.7	1.6	<0.50	22	31	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<10
MW-705 MW-705	UG/L	8/31/2011	1300 1100	79 56	1.4 7.6	3.3	2.3 29	<0.50 6.3	13 73	66 <10	<1.0 38	1.9 31	9.8	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	4.2 2.1	<1.0 <1.0	<1.0 <1.0	0.56 <0.50	1.2 <1.0
MW-705	UG/L UG/L	11/17/2011 2/14/2012	410	56	1.6	7.0	7.8	0.66	250	240	3.3	8.1	9.8 3.8	<1.0	<1.0	<1.0	8.9	1.3	<1.0	<0.50	1.8
MW-705	UG/L	2/14/2012	440	49	0.86	5.6	5.7	<0.50	250	230	<1.0	5.0	2.6	<1.0	<1.0	<1.0	8.3	1.3	<1.0	<0.50	1.5
MW-705	UG/L	5/14/2012	600	27	12	2.8	5.6	0.76	64	49	12	5.9	2.0	<1.0	<1.0	<1.0	7.4	1.4	<1.0	<0.50	<1.0
MW-705	UG/L	5/14/2012	610	36	<0.50	2.1	5.6	<0.50	60	33	<1.0	1.1	<1.0	<1.0	10	<1.0	8.3	1.8	<1.0	<0.50	<10
MW-705	UG/L	9/4/2012	100	0.79	<0.50	<0.50	<1.0	<0.50	12	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	13	2.0	<1.0	0.51	<10
MW-705 MW-705	UG/L UG/L	11/14/2012 11/14/2012	100 100	5.1 <0.50	0.56 <0.50	7.9 <0.50	9.9 <1.0	0.94 <0.50	2.1 1.7	47 24	22 <1.0	9.7 <1.0	3.2 <1.0	<1.0 <1.0	<1.0 1.1	<1.0 <1.0	9.2 11	2.3	<1.0 <1.0	<0.50 0.56	3.6 <1.0
	30/1	11,11,2012	200	13.30	13.30	.5.50	11.0	.0.50		2-7	-1.0	-2.0	-2.0	-2.0	2.2	1.10			-2.0	0.50	
MW-706	UG/L	2/4/2011	390	4.9	0.57	<0.50	<1.0	<0 50	4.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	3.6	<1.0	<1.0	<0.50	<10
MW-706	UG/L	4/11/2011	540	9.0	<0.50	<0.50	<1.0	<0.50	5.9	89	<1.0	<1.0	<1.0	<1.0	<1.0	<10	6.0	<1.0	<1.0	<0.50	2.6
MW-706	UG/L	8/31/2011	1100	25	0.86	0.65	1.9	<0.50	5.4	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0	<0.50	1.9
MW-706 MW-706	UG/L UG/L	11/18/2011 2/14/2012	490 350	9.5 16	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 4.4	<10 16	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	3.3 4.5	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 2.5
MW-706	UG/L	5/14/2012	1300	22	10	0.95	2.6	0.50	6.8	16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.7	<1.0	<1.0	<0.50	1.5
MW-706	UG/L	5/14/2012	1500	23	10	1.0	2.6	0.53	7.0	17	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<0.50	1.6
MW-706	UG/L	9/4/2012	410	12	<0.50	<0.50	1.2	<0.50	5.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	4.8	<1.0	<1.0	<0.50	1.2
MW-706	UG/L	11/15/2012	<50	2.6	<0.50	3.0	4.1	<0.50	6.6	110	6.1	3.0	1.2	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-706	UG/L	11/15/2012	<50	3.1	< 0.50	0.86	1.1	< 0.50	5.6	110	2.9	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	< 0.50	<10

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-707	UG/L	2/4/2011	2000	520	120	7.6	120	150	15	<10	<1.0	10	7.8	4.1	8.7	<1.0	7.0	6.9	<1.0	2.7	<1.0
MW-707	UG/L	4/8/2011	7000	1000	560	180	670	310	15	<10	26	74	27	<1.0	3 2	<1.0	8.7	1.6	<1.0	4 0	<1.0
MW-707	UG/L	11/18/2011	8300	930	120	55	1900	120	<1.0	<10	150	250	53	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0 50	<1.0
MW-707	UG/L	2/1/2012	10000	1200	150	100	1100	96	<1.0	<10	110	220	69	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
MW-707 MW-707	UG/L UG/L	5/15/2012 9/4/2012	9700 6700	1000 1400	200 41	82 26	870 220	74 29	15 9.7	12 <10	120 5.2	190 55	42 26	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	3.2 3.8	<1 0 <1 0	<1.0 <1.0	<0 50 1 3	2.3 1.5
MW-707	UG/L	11/15/2012	310	180	11	6.6	29	9.5	2.3	<10	21	11	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	2/4/2011	530000	1400	420	3000	8100	13	330	<10	370	2200	92	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
MW-708 MW-708	UG/L UG/L	9/1/2011 11/18/2011	38000 18000	1900 1100	230 62	1200 630	2200 860	54 30	2300 1000	2500 <100	150 180	940 940	430 390	<1.0 <10	<1.0 <10	<1.0 <10	<1.0 <10	<1 0 <10	<1.0 <10	<0 50 <5.0	<1.0 <10
MW-708	UG/L	2/10/2012	18000	1700	74	770	1000	38	830	<10	170	1100	410	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
MW-708	UG/L	5/15/2012	57000	870	39	550	750	18	450	120	110	430	380	<1.0	<1.0	<1.0	<1.0	<10	<1.0	0.86	<1.0
MW-708 MW-708	UG/L	9/5/2012	17000	1400 73	75 0.57	710 5.4	1000 9.5	32 0.58	390 3.8	<10 55	160 4.0	1400 37	520 13	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1 0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0
IVIW-708	UG/L	11/16/2012	1000	/3	0.57	5.4	9.5	0.58	3.8	55	4.0	3/	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/4/2011	500	16	10	<0.50	4.8	1.1	2.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-709	UG/L	4/6/2011	580	26	0.86	0.89	4.1	0.72	4.6	<10	2.7	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-709 MW-709	UG/L UG/L	9/1/2011 11/21/2011	9900 1100	1.1 <0.50	<0.50 <0.50	0.91 0.77	4.6 2.1	1.2 0.75	7.6 6.4	60 <10	<1.0 4.6	2.4 1.4	1.2 1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
MW-709	UG/L	2/10/2011	760	<0.50	<0.50	<0.50	<1.0	<0.50	4.4	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
MW-709	UG/L	5/16/2012	920	<0.50	<0.50	<0.50	<1.0	<0.50	4.7	20	1.1	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-709	UG/L	9/5/2012	670	<0.50	0.86	<0.50	1.8	0.67	2.2	23	12	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
MW-709	UG/L	11/16/2012	650	1.7	<0.50	<0.50	<1.0	<0.50	2.4	100	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-710	UG/L	2/8/2011	93	0.84	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	55	93	2.9	14	41	3.1	0.81	1.3
MW-710	UG/L	2/8/2011	110	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	54	89	2.9	14	41	3.1	<0.50	1.2
MW-710	UG/L	4/7/2011	<50 100	0.81	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	76	72	4.1	19	56	4.9	15	2.0
MW-710 MW-710	UG/L UG/L	4/7/2011 9/2/2011	100 380	0.84 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	1.0 <1.0	<1.0 <1.0	<1.0 <1.0	82 76	92 97	4.0 2.0	18 17	54 50	4.7	15 12	1.9 1.1
MW-710	UG/L	9/2/2011	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	58	<1.0	<1.0	<1.0	76	100	2.2	18	54	4.6	12	1.3
MW-710	UG/L	11/21/2011	95	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	51	71	1.5	13	35	3.6	<0.50	<1.0
MW-710	UG/L	11/21/2011	79	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	52	71	1.5	13	34	3.4	<0.50	<1.0
MW-710 MW-710	UG/L UG/L	2/1/2012 5/16/2012	170 130	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	66 53	110 77	2.1 1.2	23 19	71 48	6.0 4.4	<0.50 <0.50	<1.0 <1.0
MW-710	UG/L	9/5/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.8	1.0	<1.0	77	91	<1.0	16	56	3.9	<0.50	1.2
MW-710	UG/L	11/16/2012	95	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	81	130	2.0	19	86	4.8	<0.50	8.2
MW-711	UG/L	2/8/2011	11000	520	440	120	380	250	11	<10	260	180	110	<1.0	8.4	<1.0	4.5	<10	<1.0	<0.50	7.5
MW-711	UG/L	4/6/2011	7100	<0.50	<0.50	65	160	50	20	<10	420	52	36	<1.0	1.1	<1.0	2.6	<10	<1.0	<0 50	8.7
MW-711	UG/L	9/2/2011	44000	1600	1800	650	3000	1100	25	<10	620	1800	550	<1.0	<1.0	1.3	3.8	<10	<1.0	<0.50	17
MW-711 MW-711	UG/L UG/L	11/21/2011 2/10/2012	14000 23000	370 1900	290 2100	530 440	1800 1800	790 770	<1.0 14	<10 <10	880 360	480 480	98 150	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0
MW-711	UG/L	5/16/2012	25000	2900	3200	730	3000	1200	14	<10	370	<1.0	300	<1.0	<1.0	<1.0	3.0	<10	<1.0	<0.50	5.9
MW-711	UG/L	9/5/2012	28000	2100	2000	640	2000	1100	5.9	<10	370	720	120	<1.0	<1.0	<1.0	2.2	<10	<1.0	<0 50	5.8
MW-711	UG/L	11/16/2012	35000	6200	7000	1400	4500	2300	4.4	41	350	430	210	<1.0	<1.0	5.9	19	<10	1.2	<0 50	120
MW-712	UG/L	2/9/2011	14000	1200	520	380	1800	390	23	<10	98	460	170	<1.0	<1.0	<1.0	2.6	<10	<1.0	<0.50	<1.0
MW-712	UG/L	4/7/2011	94	860	140	270	1100	170	32	<10	140	580	220	<1.0	18	<1.0	3.4	<10	<1.0	0.64	2.2
MW-712	UG/L	9/2/2011	6300	440	77	100	350	72	19	<10	43	180	76 72	<1.0	<1.0	<1.0	2.8	<10	<1.0	0.71	<1.0
MW-712 MW-712	UG/L UG/L	11/21/2011 2/13/2012	8000 8300	600 850	60 57	90 62	310 180	60 46	<1.0 21	<10 94	65 24	140 86	72 44	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 3.4	<1 0 <1 0	<1.0 <1.0	<0 50 <0 50	<1.0 1.7
MW-712	UG/L	5/17/2012	8400	650	130	180	740	150	86	22	44	240	77	<1.0	<1.0	<1.0	3.0	<10	<1.0	<0.50	1.1
MW-712	UG/L	9/6/2012	10000	1100	27	47	110	40	110	97	49	88	33	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
MW-712	UG/L	11/19/2012	670	55	5 8	8.1	37	8.6	5.9	<10	11	17	4.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/9/2011	280	29	<0.50	<0.50	1.7	<0.50	3.5	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	2.2	<1.0	<1.0	<0.50	<10
MW-713	UG/L	4/8/2011	1000	150	<0.50	0.91	1.6	<0.50	75	120	2.8	<1.0	<1.0	<1.0	<1.0	<1.0	5.4	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/2/2011	310	73	3 0	1.7	7.8	3.6	71	100	11	7.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
MW-713 MW-713	UG/L UG/L	11/22/2011 11/22/2011	3300 3500	900 800	1.6 1.9	3.4 3.8	12 14	2.6 2.9	230 230	220 230	2.2	2.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.5 2.8	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-713	UG/L	2/13/2012	5500	1900	2 2	4.6	9.8	2.5	390	160	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	5/17/2012	5100	2300	2 3	5.3	6.0	1.3	400	110	3.6	1.1	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/6/2012	9600	1600	3 5	6.4	6.8	1.5	410	75	14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/19/2012	750	350	0.79	1.5	2.1	<0.50	190	73	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/14/2011	370	1.3	<0.50	<0.50	<1.0	<0.50	10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-714	UG/L	4/7/2011	16000	16	4 0	2.1	11	1.9	16	<10	23	4.7	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714 MW-714	UG/L UG/L	9/2/2011 11/22/2011	500 430	3.8 9.0	<0.50 <0.50	<0.50 <0.50	1.1 <1.0	<0.50 <0.50	9.7 8.4	37 <10	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
MW-714	UG/L	11/22/2011	490	4.7	<0.50	<0.50	<1.0	<0.50	7.9	<10	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
/ エコ	J J/ L	,, 2011	.50		.5.50	-5.50	.1.0	-0.50	1		-1.0	-2.0		-1.0				-1.0	-1.0	.0.50	0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-714	UG/L	2/13/2012	760	3.9	<0.50	<0.50	<1.0	<0.50	7.1	23	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-714	UG/L	2/13/2012	730	5.0	0.72	<0.50	1.1	<0.50	8.4	29	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-714 MW-714	UG/L UG/L	5/18/2012 9/6/2012	390 500	2.4 1.6	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	7.1 2.3	<10 <10	1.2 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
MW-714	UG/L	11/19/2012	<50	1.2	<0.50	<0.50	<1.0	<0.50	2.4	20	3.7	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
						3,00								.=.0	7=10					0.00	
MW-715	UG/L	2/14/2011	2000	480	12	1.7	24	7.4	2.8	<10	<1.0	2.6	4.2	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	4/8/2011	1500	310	5.6	1.0	3.6	1.6	8.8	<10	3.8	<1.0	1.7	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-715	UG/L	9/2/2011	5500	800	2 5 1.4	4.0	12	5.3 2.5	8.2	22 20	5.0 3.8	4.5 2.5	4.8 4.6	<1.0 <1.0	<1.0	<1.0	1.5	<1.0	<1.0	0.56 0.53	1.9
MW-715 MW-715	UG/L UG/L	9/2/2011 11/22/2011	1100 1500	420 450	1.4	2.2 6.0	6.1 <1.0	<0.50	7.9 8.5	11	3.5	4.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	1.5 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50	<1.2
MW-715	UG/L	2/1/2012	860	270	2.6	1.7	5.6	1.1	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-715	UG/L	5/18/2012	13000	2100	19	1100	1900	350	4.3	<10	230	930	270	<1.0	<1.0	<1.0	1.4	<10	<1.0	<0 50	2.1
MW-715	UG/L	9/6/2012	610	11	0.56	62	<1.0	<0.50	1.2	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
MW-715	UG/L	11/19/2012	<50	0.52	<0.50	<0.50	<1.0	<0.50	<1.0	<10	2.2	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-1	UG/L	11/1/1989		390	3 9	2.1								<0.5A		<0 5A			3.5A	<0.5A	21
W-1	UG/L	3/1/1990		140	<5	<5								<5		<10			<5	<5	<20
W-1	UG/L	4/1/1990		200	12	12								<5		<5	<25		1.6	<5	<5
W-1	UG/L	12/18/1996	800	78	<5	<5			<10	-	10	<5	<5	<5 .r.		<5	<5		<5 .f	<5	<10
W-1 W-1	UG/L UG/L	1/14/1998 8/20/1998	1100 1200	62 79	<5 <5	<5 <5			<5 14	-	<10 <10	<5 <5	<5 <5	<5 <5		<5 <5	<5 8.6		<5 8.4	<5 <5	16 26
W-1	UG/L	1/29/1999	1400	57	<5	<5 <5			<5	 	<10	<5 <5	<5 <5	<5 <5		<5 <5	8.6 <5		<5	<5 <5	18
W-1	UG/L	7/19/1999	1500	48	<2	<2			<2		<20	<2	<2	<2		<2	<2		<2	<1	<1
W-1	UG/L	8/3/2000	880	29	<1	<1			10		<10	<1	<1	<1		<1	1.6		1.6	<0.5	7.3
W-1	UG/L	2/8/2001	<500	21	<1	<1			68		<10	<1	<1	<1		<1	2.3		<1	<0.5	6.3
W-1 W-1	UG/L UG/L	7/26/2001 5/8/2002	620 280	18 7.7	<1 <1	<1 <1			62 5.9	44000	<10 <10	<1 <1	<1 <1	<1 <1		<1 <1	2.8 3.1		1.8	<0.5 <0.5	6.8
W-1	UG/L	9/25/2002	210	12	<1	<1			1.9	30000	<10	<1	<1	<1		<1	6.5		<1	<0.5	14
W-1	UG/L	7/1/2004	460	14	2 8	1.5	<0.5	<0.5	3J	<100	<5	<5	<5	<5		4J	9.3		1J	<5	2
W-1	UG/L	10/6/2005	310	43	<1	<1	<1	<1	25	34	<10	<1	<1	<1		1.6	<1		<1	<0.5	7.1
W-1	UG/L	2/15/2006	266	32	<5	<5	<5	<5	22	37	<5	<5	<5	<5		1.3	<5		<5	<5	3.3
W-1 W-1	UG/L UG/L	8/3/2006 11/9/2006	1100 470	86 100	<2 <2	<2 <2	<2 <2	<2 <2	77 65	100 78	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-1	UG/L	2/8/2007	500	77	<2	<2	<2	<2	21	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	UG/L	5/10/2007	890	110	0.57	0.61	<2	0.32	28	43	1	<2	<2	<2		0.42	<2		<2	<2	1.8
W-1	UG/L	8/9/2007	1100	140	0.84	0.84	<2	0.63	64	84	1.1	<2	<2	<2		0.47	<2		0.32	<2	1.9
W-1 W-1	UG/L	11/7/2007 2/7/2008	1200	140 96	1.6 <2	1.2 <2	0.68 <2	0.91	56	80 51	1.6	0 38	2.1 <2	<0.32 <2		0.7 <2	<0.32 <2		<0.27 <2	<0.28 <2	1.2
W-1	UG/L UG/L	1/20/2009	1000 230	15	<2	<2	<2	<2 <2	31 3.1	23	<5 <5	<2 <2	<2	<2		0.87	<2		0.58	<2	<5 2.8
W-1	UG/L	1/20/2009	220	19	<2	<2	<2	<2	3.9	35	<5	<2	<2	<2		1.1	0.4		0.61	<2	3.7
W-1	UG/L	4/24/2009	180	3.9	<2	<2	<2	<2	<5	26	<5	<2	<2	<2		1.4	<2		0.74	<2	9.5
W-1	UG/L	3/5/2010	270	3.3	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	1.3
W-1 W-1	UG/L UG/L	5/13/2010 8/6/2010	260 260	9.3 17	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1 0 <1 0	<1.0 <1.0		<1.0 <1.0	<0.50 <0.50	1.2 <1 0
W-1	UG/L	11/5/2010	150	15	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-1	UG/L	2/4/2011	200	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-1	UG/L	4/14/2011	150	1.4	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-1	UG/L	8/26/2011	130	3.9	<0.50	<0.50	<1.0	<0.50	1.3	16	<1.0	<1.0	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	<1.0	<0.50	6.4
W-1 W-1	UG/L UG/L	11/14/2011 11/14/2011	160 160	12 12	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 5.1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-1	UG/L	2/6/2012	160	18	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	3.7	<1.0	<1.0	<1.0	<0.50	2.4
W-1	UG/L	5/7/2012	680	15	<0.50	<0.50	<1.0	<0.50	<1.0	23	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	<0.50	1.8
W-1	UG/L	8/27/2012	180	9.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-1	UG/L	11/5/2012	67	1.2	<0.50	<0.50	<1.0	<0 50	<1.0	<10	4.4	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-10	UG/L	11/8/2006	26000	8200	5000	570	2100	820	<100	<1000	340	360	110	<40		<40	<40		<40	<40	<100
W-10	UG/L	2/9/2007	28000	6400	2200	520	2200	710	<500	<5000	<500	280	<200	<200		<200	<200		<200	<200	<500
W-10	UG/L	2/9/2007	26000	5100	1600	410	1800	570	<500	<5000	<500	260	<200	<200		<200	<200		<200	<200	<500
W-10	UG/L	5/11/2007	7900	430	140	100	480	130	<10	84	100	130	48	<4		<4	6		8.2	12	3.6
W-10 W-10	UG/L UG/L	5/11/2007 8/9/2007	7800 5400	500 590	160 20	110 82	540 330	150 40	<25 <25	85 68	150 59	150 90	53 33	<10 <10		<10 <10	6.6 6.4		8.8	1.4 <10	3.9
W-10 W-10	UG/L	11/9/2007	<12000	4700	460	330	1300	240	<32	<490	240	190	55	<32		<27	<32		<27	<28	<30
W-10	UG/L	2/8/2008	<28000	7200	280	300	1300	190	<500	<5000	140	140	38	<200		<200	<200		<200	<200	<500
W-10	UG/L	2/8/2008	<25000	7600	310	330	1400	200	<500	<5000	170	150	42	<200		<200	<200		<200	<200	<500
W-10	UG/L	1/21/2009	20000	8100	<200	440	1400	<200	<500	<5000	<500	230	<200	<200		<200	<200		<200	<200	<500
W-10 W-10	UG/L UG/L	4/27/2009 4/27/2009	16000	7400 5100	<200 <200	490 350	1400 830	<200 <200	<500 <500	<5000 <5000	270 220	230 190	36 31	<200 <200		<200 <200	<200 <200		<200 <200	<200 <200	<500 <500
W-10 W-10	UG/L	3/8/2010	15000 12000	5100 4200	4.4	200	630	1.6	<1.0	<5000 <10	110	93	18	<1.0		<1.0	<1.0		<1.0	7.3	<1.0
W-10	UG/L	3/8/2010	8600	3100	<250	<250		<250	<500	<5000	<500	<500	<500	<500		<500	<500		<500	<250	<500
W-10	UG/L	5/17/2010	9500	3900	7.4	230		1.9	<1.0	<10	130	70	13	<1.0		<1.0	<1.0		<1.0	2.7	<1.0
W-10	UG/L	5/17/2010	10000	2900	10	160	1	1.7	<1.0	15	110	82	14	<1.0	1	<1.0	<1.0		<1.0	4 2	<1.0

	11.4		TD11 :		-	_		. v	LATRE	TD4	NAD	424700	4 2 5 7140	DOF	T05	14.2 DOE	4.2.005	4.4 005	4.4.004	4.2.504	
Location W-10	Unit UG/L	Date 8/9/2010	TPH-g 7900	B 2400	12	130	m/p-X	o-X 1.9	MTBE <1.0	TBA 93	NAP 60	1,2,4-TMB 62	1,3,5-TMB 10	PCE <1.0	TCE	t1,2-DCE <1.0	c1,2-DCE <1.0	1,1-DCE	1,1-DCA <1.0	1,2-DCA 3 0	VC <1.0
W-10	UG/L	11/8/2010	7700	2900	45	160	140	6.4	<1.0	<10	180	56	8.1	<1.0	<1.0	<1.0	<1.0	<10	1.0	2.6	1.4
W-10	UG/L	2/8/2011	11000	2600	100	160	140	28	<1.0	<10	150	61	13	<1.0	<1.0	<1.0	<1.0	<10	<1.0	4 0	<1.0
W-10 W-10	UG/L UG/L	4/21/2011 9/1/2011	12000 8200	4900 2900	97 2 2	240 120	190 44	38 1.1	<1.0 <1.0	250 140	150 97	65 31	15 5.7	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.6 <1.0	12 4 9	<1.0 <1.0
W-10 W-10	UG/L	11/16/2011	8800	840	3 9	190	92	1.1	<1.0	<10	94	49	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-10	UG/L	2/8/2012	10000	3100	5 5	230	150	2.9	<1.0	<10	130	73	12	<1.0	<1.0	<1.0	<1.0	<10	<1.0	5.6	<1.0
W-10	UG/L	5/10/2012	1000	15	<0.50	1.4	1.2	<0.50	<1.0	<10	21	4.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
W-10	UG/L	8/28/2012	8200	3100	4 3	160	32	1.4	<1.0	61	270	27	2.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2 8	<1.0
W-10	UG/L	11/7/2012	5100	930	7 9	120	65	2.9	<1.0	65	130	27	4.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2 3	<1.0
W-11	UG/L	11/9/2006	5200	99	12	74	240	37	<5	<50	<5	73	40	<2		<2	18		<2	<2	<5
W-11	UG/L	11/9/2006	12000	96	7 8	54	140	21	<5	<50	<5	60	34	<2		<2	18		<2	<2	<5
W-11 W-11	UG/L UG/L	2/9/2007 5/9/2007	8000 540	95 45	14 1.6	78 19	280 47	27 3.1	<10 <5	<100 <50	<10 0.68	56 9	28 4.4	<4 <2		<4 0.41	15 18		<4 <2	<4 <2	<10 0.96
W-11	UG/L	8/8/2007	<1100	700	3.7	36	11	7.1	<5	<50	0.81	15	8.6	<2		<2	9.9		<2	0.29	1.1
W-11	UG/L	11/8/2007	460	61	12	14	37	13	<0.32	<4.9	1	35	17	<0.32		<0.27	10		<0.27	<0 28	<0.3
W-11	UG/L	12/8/2010	77000	150	51	260	2300	690	17	43	48	1300	800	<1.0	<1.0	<1.0	<1.0	<10	1.4	<0 50	<1.0
W-11 W-11	UG/L UG/L	2/4/2011 4/15/2011	10000 6300	100 410	1 2 15	23 50	100 390	16 18	<1.0 <1.0	<10 <10	7.6 3.4	100 83	180 280	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-11	UG/L	8/29/2011	10000	560	2 2	57	640	14	<1.0	<10	<1.0	100	190	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
W-11	UG/L	11/14/2011	10000	620	3 0	100	510	7.5	<1.0	<10	6.0	130	240	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
W-11	UG/L	2/8/2012	2900	12	<0.50	6.2	50	0.80	<1.0	<10	2.7	24	39	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	0.90	<1.0
W-11 W-11	UG/L UG/L	5/10/2012 8/28/2012	1800 7400	8.4 16	<0.50 30	3.1 47	7.3 130	0.80	<1.0 <1.0	<10 <10	1.7 5.0	4.6 70	10 97	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.0	<1.0 <1.0	<1.0 <1.0	0.50 <0.50	<1.0 <1.0
W-11	UG/L	11/8/2012	340	23	3.1	1.6	23	2.0	<1.0	<10	2.5	5.0	63	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11	UG/L	11/19/2012	1400	24	1.6	0.82	6.2	<0.50	<1.0	<10	3.0	3.1	60	<1.0	<1.0	<1.0	5.3	<1.0	<1.0	<0.50	1.3
		11/0/0006	1100					_	_		_		_			_					
W-12 W-12	UG/L UG/L	11/8/2006 2/7/2007	1400 4800	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	55 50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	5.4 6.8		<2 <2	<2 <2	<5 <5
W-12	UG/L	5/9/2007	220	<2	<2	<2	<2	<2	<5	40	<5	<2	<2	<2		0.31	4.3		<2	0.37	1.1
W-12	UG/L	8/8/2007	1100	<2	<2	0.56	<2	<2	0.36	40	<5	<2	<2	<2		<2	3.1		<2	<2	0.85
W-12	UG/L	11/6/2007	1500	0.37	<0.36	0.97	<0.6	<0.3	1.2	58	0.66	<0.23	<0.26	<0.32		<0.27	2.6		<0.27	0.42	0.47
W-12 W-12	UG/L UG/L	2/8/2008 1/20/2009	410 620	0.94 <2	<2 <2	0.69	<2 <2	<2 <2	0.82 <5	54 32	2.5 <5	<2 <2	<2 <2	<2 <2		<2 0.48	1.8 5.4		<2 <2	0.45 <2	<5 2.4
W-12	UG/L	4/22/2009	1100	<2	<2	2.1	<2	<2	0.33	30	8.2	0 26	<2	<2		<2	3.7		<2	<2	1.5
W-12	UG/L	3/4/2010	400	<0.50	<0.50	2.1		<0 50	<1.0	<10	1.5	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-12	UG/L	5/12/2010	610	<0.50	<0.50	3.0		<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-12 W-12	UG/L UG/L	8/5/2010 11/4/2010	650 530	<0.50 <0.50	<0.50 <0.50	3.5 1.4	<1.0	<0 50 <0 50	<1.0 <1.0	<10 <10	2.8 1.7	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1 0 <1 0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-12	UG/L	2/3/2011	310	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-12	UG/L	4/19/2011	220	<0.50	<0.50	0.57	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	2.1	<1.0	<1.0	<0.50	2.7
W-12	UG/L	8/25/2011	360	<0.50	<0.50	1.3	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
W-12 W-12	UG/L UG/L	11/14/2011 2/8/2012	63 400	<0.50 <0.50	<0.50 <0.50	<0.50 2.2	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 <10	<1.0 1.6	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	1.2 2.3	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 2.2
W-12	UG/L	5/9/2012	450	<0.50	<0.50	0.59	<1.0	<0.50	<1.0	27	1.2	<1.0	<1.0	<1.0	<1.0	<10	1.4	<1.0	<1.0	<0.50	1.2
W-12	UG/L	8/30/2012	580	<0.50	<0.50	1.5	1.0	<0.50	<1.0	<10	20	1.2	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-12	UG/L	11/8/2012	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-14A	UG/L	2/12/2008	42	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	2.3		1.1	9		0.46	0.37	<5
W-14A	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-14A	UG/L	4/21/2009	54	<2	<2	<2	<2	<2	0.47	8.1	<5	<2	<2	1.3		0.86	8.7		0.44	0.4	<5
W-14A W-14A	UG/L UG/L	3/1/2010	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1 0 <1 0	1.7 1.9	1	<1.0 <1.0	<0.50 <0.50	<10
W-14A W-14A	UG/L UG/L	5/10/2010 8/2/2010	<50 <50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0 <1.0	<1.0		<10	3.4		<1.0	<0.50	<1 0 <1 0
W-14A	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-14A	UG/L	1/31/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-14A W-14A	UG/L UG/L	4/4/2011 8/22/2011	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 5.8	<1 0 1.0	1.6 5.2	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-14A W-14A	UG/L UG/L	11/7/2011	<50 <50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<0.50	<10
W-14A	UG/L	1/30/2012	200	1.5	<0.50	38	<1.0	<0.50	<1.0	<10	<1.0	1.1	<1.0	<1.0	3 2	<10	10	1.4	<1.0	<0.50	<10
W-14A	UG/L	5/1/2012	390	41	<0.50	9.5	1.3	2.7	2.9	<10	<1.0	1.2	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-14A	UG/L	8/20/2012	1600	500	16 E 1	34 150	78	64	2.9	<10	110	57	20	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
W-14A	UG/L	10/26/2012	3800	4500	5.1	150	240	110	1.5	<10	51	120	42	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0 50	4.4
W-14B	UG/L	2/12/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0.72		<2	0 83		<2	<2	<5
W-14B	UG/L	1/13/2009	170	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	8.4		<2	4.8		<2	<2	<5
W-14B	UG/L	4/21/2009	65	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	19		2.6	9.6		2.2	0.45	<5
W-14B W-14B	UG/L UG/L	3/1/2010 5/10/2010	99 99	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 1.2		<1 0 1.1	5.6 6.2		<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-14B	UG/L	8/2/2010	55	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.1	3.1		<1.0	<0.50	<10
W-14B	UG/L	11/1/2010	88	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.0	45	2.0	10	14	1.2	<0.50	<1.0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	vc
W-14B	UG/L	1/31/2011	65	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	9.7	<10	2.0	3.1	<1.0	<0.50	<10
W-14B	UG/L	4/4/2011	<50	<0.50	1.8	<0.50	<1.0	<0 50	<1.0	48	<10	<1.0	<1.0	15	99	2.8	13	34	2.9	0.53	<1.0
W-14B	UG/L	8/22/2011	200	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	28	130	2.4	9.8	53	3.2	0.98	<1.0
W-14B W-14B	UG/L UG/L	11/7/2011 1/30/2012	<50 220	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1 0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 22	5.1 100	<1 0 <1.0	<1.0 12	1.8 55	<1.0 3.1	<0.50 <0.50	<1 0 <1.0
W-14B	UG/L	5/1/2012	150	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	69	<1.0	<1.0	<1.0	8.0	82	<1.0	11	53	2.4	<0.50	<1.0
W-14B	UG/L	8/20/2012	180	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	56	<1.0	<1.0	<1.0	8.9	150	2.4	13	60	2.9	<0.50	<1.0
W-14B	UG/L	10/26/2012	52	6.0	<0.50	1.6	4.8	0.89	<1.0	<10	20	1.8	<1.0	4.3	82	1.6	7.4	31	1.6	<0.50	1.9
										_											
W-14C W-14C	UG/L UG/L	2/12/2008 1/14/2009	260 120	1.2 2.5	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	0.89 <2		5.7 8.8	22 34		3.7 3.4	0.48 <2	0.58 <5
W-14C	UG/L	4/21/2009	67	1.5	<2	<2	<2	<2	<5	10	<5	<2	<2	<2		4.5	23		2.1	<2	<5
W-14C	UG/L	3/1/2010	300	1.6	<0.50	<0.50		<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0		5.8	34		2.4	<0.50	<10
W-14C	UG/L	5/10/2010	120	0.58	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	13		<1.0	<0.50	<10
W-14C	UG/L	8/2/2010	77	1.1	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		4.6	35		2.4	<0.50	<10
W-14C	UG/L	11/1/2010	<50 60	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0	<0 50 <0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0 3.8	<10	<1.0 9.9	<1.0 3.0	<1.0	<0.50 <0.50	<10
W-14C W-14C	UG/L UG/L	1/31/2011 4/4/2011	<50	1.2	<0.50	<0.50	<1.0 <1.0	<0.50	<1.0 <1.0	<10 27	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	24	1.1 3.9	30	16	<1.0 3.1	<0.50	<1 0 <1 0
W-14C	UG/L	8/22/2011	290	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	22	<1.0	<1.0	<1.0	<1.0	21	2.3	26	12	2.2	<0.50	<1.0
W-14C	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	1.2	<10	3.2	<1.0	<1.0	<0.50	<10
W-14C	UG/L	1/30/2012	100	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.4	<10	5.3	2.2	<1.0	<0.50	<10
W-14C	UG/L	5/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	3.8	<1.0	<1.0	<0.50	<1.0
W-14C W-14C	UG/L UG/L	8/20/2012 10/26/2012	71 <50	<0.50 0.75	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 <10	<1 0 6.1	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	5.8 8.4	1.4 2.6	<1.0 <1.0	<0.50 <0.50	<1 0 2.6
VV-14C	00/1	10/20/2012	\J0	0.73	VU.JU	\U.JU	\1.U	\U JU	\1.U	/10	0.1	\1.U	\1.0	\1.0	\1.U	\1 U	0.4	2.0	\1.0	\U.JU	2.0
W-15A	UG/L	2/11/2008	2700	620	4 9	5.1	11	<20	650	120	<50	<20	<20	<20		<20	<20		<20	<20	<50
W-15A	UG/L	1/14/2009	230	7.4	<2	<2	<2	<2	190	170	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15A W-15A	UG/L UG/L	4/24/2009 3/2/2010	530 240	8.4 0.93	<4 <0.50	<4 <0.50	<4	<4 <0.50	220 44	220 94	<10 <1.0	<4 <1.0	<4 <1.0	<4 <1.0		<4 <1.0	<4 <1.0		<4 <1.0	<4 <0.50	<10 <1 0
W-15A	UG/L	5/10/2010	260	1.5	<0.50	<0.50		<0.50	85	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<10
W-15A	UG/L	8/2/2010	310	0.54	<0.50	<0.50		<0.50	71	180	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	61	<0.50	<0.50	<0.50	<1.0	<0.50	2.5	88	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-15A	UG/L	11/1/2010	74	0.66	<0.50	<0.50	1.0	<0.50	6.8	98	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-15A	UG/L	2/1/2011	14000	1400	610	400	1800	400	260	390	64	490	200	<1.0	<1.0	<1.0	<1.0	<10	<1.0	1.6	<1.0
W-15A W-15A	UG/L UG/L	4/5/2011 2/2/2012	22000 62000	<0.50 4400	<0.50 2400	<0.50 2400	<1.0 9900	<0.50 2300	450 930	<10 <10	150 4.6	<1.0 2900	<1.0 880	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-15A	UG/L	5/2/2012	2100000	3900	3600	3900	13000	4400	940	220	450	6200	1800	<10	<10	<10	<10	<10	<10	<5.0	<10
W-15A	UG/L	8/21/2012	23000	540	370	590	3300	620	160	<250	190	1100	340	<25	<25	<25	<25	<25	<25	<12	<25
W-15A	UG/L	10/30/2012	4500	41	23	46	260	75	39	120	330	270	120	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0 50	<1.0
14/455		2/11/2000	1500		20		_			110			20	20			20				
W-15B W-15B	UG/L UG/L	2/11/2008 1/14/2009	<1600 340	900 160	<20 <2	<20 <2	7 5	<20 <2	20	110 110	<50 <5	<20 <2	<20 <2	<20 <2		<20 <2	<20 <2		<20 <2	<20 <2	<50 <5
W-15B	UG/L	4/24/2009	63	6.2	<2	<2	<2	<2	5.8	98	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15B	UG/L	3/2/2010	220	3.8	<0.50	<0.50		<0.50	5.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-15B	UG/L	5/11/2010	230	20	<0.50	<0.50		<0.50	17	36	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<10
W-15B	UG/L	8/3/2010	250	14	<0.50	<0.50		<0.50	19	67	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<10
W-15B	UG/L	11/2/2010	740	7.0	<0.50 1.7	<0.50	3.2 4.0	0.74 1.4	50 22	87 21	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<0.50 <0.50	<1 0 <1 0
W-15B W-15B	UG/L UG/L	2/1/2011 4/5/2011	120 1500	<0.50	66	0.55 18	120	64	130	<10	6.3	16	16	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.50	<1.0
W-15B	UG/L	8/23/2011	1400	120	40	17	110	30	260	210	<1.0	13	7.2	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0.50	<1.0
W-15B	UG/L	8/23/2011	1100	110	34	15	100	29	200	220	<1.0	14	7.2	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<0 50	<1.0
W-15B	UG/L	11/10/2011	250	17	5.4	2.8	17	3.9	55	<10	<1.0	2.4	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
W-15B W-15B	UG/L UG/L	2/2/2012 5/2/2012	280 780	35 27	2.6	4.4 3.1	31 18	18 6.3	100 200	80 160	<1.0 <1.0	2.3 4.4	3.8 2.6	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-15B W-15B	UG/L	8/20/2012	780 98	2.6	<0.50	<0.50	<1.0	0.52	110	87	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
W-15B	UG/L	10/30/2012	190	9.2	2 2	1.5	12	2.7	49	96	43	4.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<10
W-15C	UG/L	2/11/2008	<50	0.94	0.57	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	1.1		0.45	0.35	0.34
W-15C	UG/L	1/15/2009	29 43	1.1	<2 <2	<2	<2 <2	<2	<5	27	<5	<2	<2 <2	<2 <2		<2 <2	5.7	1	1.2 <2	0.86	0.9
W-15C W-15C	UG/L UG/L	4/24/2009 3/2/2010	<50	<2 <0.50	<0.50	<2 <0.50	<u> </u>	<2 <0.50	<5 <1.0	25 <10	<5 <10	<2 <1.0	<1.0	<1.0		<10	1.4		<1.0	<2 <0.50	<5 <10
W-15C	UG/L	5/11/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	1.6	1	<1.0	<0.50	<10
W-15C	UG/L	8/3/2010	<50	<0.50	<0.50	<0.50		<0 50	<1.0	20	<10	<1.0	<1.0	<1.0		<10	4.7		1.0	0.54	1.5
W-15C	UG/L	11/2/2010	70	<0.50	<0.50	<0.50	<1.0	<0.50	2.9	<10	<10	<1.0	<1.0	<1.0	1.0	<10	1.7	<1.0	<1.0	<0.50	<10
W-15C	UG/L	2/1/2011	94	1.6	0.85	<0.50	2.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	1.8	<10	2.6	<1.0	<1.0	<0.50	<10
W-15C W-15C	UG/L UG/L	4/5/2011 8/23/2011	120 89	10 9.5	4 8 3.5	1.9 1.4	10 13	2.6 2.7	4.2 5.2	<10 <10	1.1 <1 0	<1.0 1.8	<1.0 <1.0	<1.0 <1.0	4.6 5.5	<1 0 <1 0	6.6 6.5	1.5 1.6	1.4 <1.0	<0.50 <0.50	1.8
W-15C	UG/L	11/8/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-15C	UG/L	1/31/2012	53	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<10	<1.0	<1.0	<1.0	4.9	<10	5.8	1.5	<1.0	<0.50	<10
W-15C	UG/L	5/2/2012	60	0.64	0.67	1.4	6.4	1.3	<1.0	<10	<10	3.2	1.2	<1.0	1.3	<10	2.1	<1.0	<1.0	<0.50	<10
W-15C	UG/L	8/21/2012	140	4.1	1.7	0.92	5.9	1.4	1.7	10	2.9	1.5	<1.0	<1.0	3.7	<10	5.2	1.2	<1.0	<0.50	<10
W-15C	UG/L	10/30/2012	120	16	4 9	3.2	36	7.1	3.4	<10	9.9	6.6	2.9	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	о-Х	МТВЕ	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-16A	UG/L	11/9/2007	260	41	<0.36	<0.25	<0.6	<0.3	<0.32	30	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		2.6	<0.28	16
W-16A	UG/L	2/6/2008	310	40	<2	<2	<2	<2	<5	34	<5	<2	0.63	<2		0.88	<2		2.8	<2	14
W-16A W-16A	UG/L	1/21/2009 4/27/2009	290 410	30 34	<2	<2 <2	<2 <2	<2 <2	<5 <5	<50 20	<5 <5	<2 <2	<2 0.27	<2 <2		<2 0.54	<2 <2		2.5 1.8	<2 <2	7.2 17
W-16A W-16A	UG/L UG/L	3/5/2010	220	4.2	<0.50	<0.50	<2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	2.9
W-16A	UG/L	5/14/2010	110	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-16A W-16A	UG/L UG/L	8/9/2010 11/5/2010	120 90	0.93 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1 0 <1 0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-16A	UG/L	2/7/2011	320	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.7	<0.50	1.1
W-16A	UG/L	4/18/2011	520	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	2.2	<0.50	2.2
W-16A W-16A	UG/L UG/L	8/26/2011 11/8/2011	280 65	13 3.1	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	30 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	1.2 <1.0	<0.50 <0.50	<1 0 <1 0
W-16A	UG/L	2/3/2012	230	16	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.1	<0.50	<10
W-16A W-16A	UG/L UG/L	5/3/2012 8/22/2012	550 390	22 11	<0.50 <0.50	1.0 <0.50	4.4 <1.0	1.1 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	1.8 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	2.2 <1.0	<0.50 <0.50	<1 0 <1 0
W-16A	UG/L	10/31/2012	86	6.9	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.9	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W 46B	116/1	44/0/2007	27	7.4	.0.25	-0.25	.0.6	.0.2	.0.22	0.1	0.0	0.26	.0.26	.0.22		0.7			.0.27	.0.20	.0.2
W-16B W-16B	UG/L UG/L	11/9/2007 2/6/2008	37 400	7.4 48	<0.36 <2	<0.25 0.33	<0.6 <2	<0.3 <2	<0.32 <5	9.1 9.9	0.8 1.9	0.26	<0 26 <2	<0.32 <2		8.7 43	6.6 27		<0.27 <2	<0.28 <2	<0 3 <5
W-16B	UG/L	1/21/2009	73	16	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		15	9.7		<2	<2	<5
W-16B W-16B	UG/L UG/L	4/27/2009 3/8/2010	47 73	0.9 8.6	<20 <0.50	<20 <0.50	<20	<20 <0.50	<50 <1.0	<500 <10	<50 <1 0	<20 <1.0	<20 <1.0	<20 <1.0		9.4 3.7	6.1 5.8		<20 <1.0	<20 <0.50	<50 <1 0
W-16B	UG/L	5/14/2010	60	3.0	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.0	3.0		<1.0	<0.50	<10
W-16B	UG/L	8/9/2010	<50	1.3	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-16B W-16B	UG/L UG/L	11/5/2010 2/7/2011	110 290	23 80	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 18	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 3 5	9.4 50	13 70	<1.0 2.0	1.2 8.5	<0.50 <0.50	<1 0 2.9
W-16B	UG/L	4/18/2011	550	100	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	6.4	100	89	2.6	9.2	<0.50	10
W-16B	UG/L	8/26/2011	89	20	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	12	16	<1.0	1.4	<0.50	1.1
W-16B W-16B	UG/L UG/L	11/8/2011 2/3/2012	<50 210	24 30	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.0 1.4	19 24	13 16	<1.0 <1.0	1.5 1.3	<0.50 <0.50	<1 0 <1 0
W-16B	UG/L	5/3/2012	410	150	<0.50	0.58	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3 2	100	52	1.2	6.8	<0.50	23
W-16B W-16B	UG/L UG/L	8/22/2012 10/31/2012	61 58	8.7 13	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1 0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	3.5 6.6	6.0 4.2	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 15
VV-10B	00/1	10/31/2012	36	13	V0.50	V0.30	\1.0	V0.30	\1.0	\10	\1.0	\1.0	V1.0	\1.0	\1.0	0.0	4.2	\1.0	\1.0	V0.30	15
W-16C	UG/L	11/9/2007	170	18	<0.36	<0.25	<0.6	<0.3	<0.32	13	<0.41	<0.23	<0.26	<0.32		12	40		11	<0.28	5.6
W-16C W-16C	UG/L UG/L	2/6/2008 1/21/2009	360 510	30 40	0.46 <2	<2 <2	<2 <2	<2 <2	<5 <5	21 <50	<5 <5	<2 <2	<2 <2	<2 <2		14 17	66 73		24 35	<2 <2	18 24
W-16C	UG/L	4/28/2009	170	20	<2	<2	<2	<2	<5	8 2	<5	<2	<2	<2		12	41		14	<2	8.2
W-16C W-16C	UG/L UG/L	3/8/2010 5/14/2010	95 63	2.5 1.3	<0.50 <0.50	<0.50 <0.50		<0 50 <0 50	<1.0 <1.0	<10 <10	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		1.2 <1 0	9.1 3.8		1.6 1.2	<0.50 <0.50	<1 0 <1 0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-16C W-16C	UG/L UG/L	11/5/2010 2/7/2011	390 440	33	<0.50 0.54	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 6.9	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	7.6 15	30 68	1.4 3.3	11 22	<0.50 <0.50	9.6 14
W-16C	UG/L	4/18/2011	510	39	0.51	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	20	80	4.7	32	<0.50	30
W-16C	UG/L	8/26/2011	320	30 24	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 1.2	15 16	63 58	2.8	24 16	<0.50 <0.50	16
W-16C W-16C	UG/L UG/L	11/9/2011 2/3/2012	270 250	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0 <1.0	<1.0	<1.0	<1.0	1.0	16	58	2.1	17	<0.50	<1.0 <1.0
W-16C	UG/L	5/3/2012	380	14	<0.50	<0.50	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	10	32	<1.0	9.8	<0.50	10
W-16C W-16C	UG/L UG/L	8/22/2012 10/31/2012	520 140	22 10	<12 <0.50	<12 <0.50	<25 <1.0	<12 <0.50	<25 <1.0	<250 <10	<25 <1.0	<25 <1.0	<25 <1.0	<25 <1.0	<25 <1.0	<25 6.7	42 16	<25 <1.0	<25 8.0	<12 <0.50	<25 50
															1.0			1.0			
W-17A	UG/L	2/14/2008	100	<2 <2	<2 <2	<2	<2 <2	<2	<5 <5	140	<5 0.41	<2	<2	<2 <2		<2	6.2 1.4		0.47	1.4	0.7
W-17A W-17A	UG/L UG/L	1/16/2009 4/22/2009	78 180	4.5	<2	<2	<2	<2 <2	<5 <5	54 57	0.41 <5	0 33	<2 <2	<2		0.39 1.9	7.7		<2 0.51	0.65	<5 <5
W-17A	UG/L	3/3/2010	51	<0.50	<0.50	<0.50		<0.50	<1.0	14	<1.0	<1.0	<1.0	<1.0		<10	1.6		<1.0	<0.50	<10
W-17A W-17A	UG/L UG/L	5/12/2010 8/4/2010	110 56	1.1 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1 0 <1 0	4.2 1.7		<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17A W-17A	UG/L	11/3/2010	69	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.7	<1.0	<1.0	<0.50	<10
W-17A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	2.0	<1.0	<1.0	<0.50	<10
W-17A W-17A	UG/L UG/L	4/20/2011 8/24/2011	<50 98	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	38 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	2.9 2.5	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17A	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	9.6	<1.0	<1.0	<0.50	<10
W-17A	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	17	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.5	<1.0	<1.0	<0.50	<10
W-17A W-17A	UG/L UG/L	5/4/2012 8/23/2012	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 12	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	3.8 2.9	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17A W-17A	UG/L	11/1/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	12	<1.0	<1.0	<1.0	<1.0	<1.0	<10	6.6	1.1	<1.0	<0.50	<10
==		2/6 - /2																			<u> </u>
W-17B W-17B	UG/L UG/L	2/14/2008 1/16/2009	39 38	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	30 18	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	1.4		<2 <2	<2 <2	<5 <5
W-17B	UG/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	0.71		<2	<2	<5

Location	Unit	Date	TPH-g	В	Т	F	m/p-X	о-Х	МТВЕ	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1.2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-17B	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50	Пі/р-х	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	TCE	<10	<1.0	1,1-DCL	<1.0	<0.50	<10
W-17B	UG/L	5/12/2010	54	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-17B	UG/L	8/5/2010	<50	<0.50	<0.50	<0.50		<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-17B	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B W-17B	UG/L UG/L	2/2/2011 4/20/2011	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 35	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17B	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17B	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17B	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	14	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17B	UG/L	5/4/2012	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17B W-17B	UG/L UG/L	8/23/2012	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 24	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
VV-1/B	UG/L	11/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	24	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	2/14/2008	36	<2	<2	<2	<2	<2	<5	25	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17C	UG/L	1/16/2009	29	<2	<2	<2	<2	<2	<5	21	<5	<2	<2	<2		<2	1.2		<2	<2	<5
W-17C	UG/L	4/23/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17C	UG/L	3/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17C W-17C	UG/L UG/L	5/12/2010 8/5/2010	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0 50 <0 50	<1.0 <1.0	<10 <10	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1 0 <1 0	<1.0 <1.0		<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17C	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	4/20/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	31	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C W-17C	UG/L UG/L	11/9/2011 2/7/2012	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 10	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-17C	UG/L	5/4/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	11	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	8/23/2012	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-17C	UG/L	11/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	11	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
	110/1	4 /4 2 /4 000	4200000	450000	.6000	25000			.200000												
W-3A W-3A	UG/L UG/L	1/13/1998 8/20/1998	4300000 1100	150000 220	<6000 <25	35000 33			<200000 440		350	<25	<25	<25		<25	<25		<25	<25	<50
W-3A	UG/L	1/28/1999	690	160	<50	<50			340		240	<50	<50	<50		<50	<50		<50	<50	<100
W-3A	UG/L	7/19/1999	5400	120	<20	<20			380		<200	37	<20	<20		<20	<20		<20	<10	<10
W-3A	UG/L	1/13/2000	14000	140	<10	<10			210		<100	<10	<10	<10		<10	<10		<10	<5	7
W-3A	UG/L	8/4/2000	3400	170	<20	8.4			220		<50	2	2	<2		<2	<20		<20	<1	5
W-3A W-3A	UG/L UG/L	2/8/2001 7/26/2001	2700 3400	34 42	<1 <1	2.9 1.7			12 6.2		63 11	13 15	4.4 <1	<1 <1		<1	<1		<1 <1	<0.5 <0.5	1.7 27
W-3A	UG/L	5/6/2002	NS NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	UG/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	UG/L	2/16/2006	306	<1	<5	<5	<5	<5	6.2	16	<5	18	16	<5		<5	<5		<5	<5	<5
W-3A	UG/L	8/3/2006	39000	<2	<2	<2	<2	<2	9	<50	38	<2	<2	<2		<2	<2		<2	<2	<5 -
W-3A W-3A	UG/L UG/L	11/9/2006 2/8/2007	8100 1400	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	11 8.4	<50 <50	37 30	6.4 3.9	9.5 6.1	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-3A	UG/L	5/10/2007	14000	0.66	<2	<2	<2	<2	7.8	23	16	2.3	3.6	<2		<2	<2		<2	<2	<5
W-3A	UG/L	8/9/2007	1900	0.79	<2	<2	<2	0.34	9.8	26	14	2	2.3	<2		<2	<2		<2	<2	<5
W-3A	UG/L	11/7/2007	1500	0.62	<0.36	<0.25	<0.6	<0.3	9.7	26	<0.41	0.64	0.67	<0.32		<0.27	<0.32		<0.27	<0.28	<0.3
W-3A	UG/L	2/7/2008	180	<2	<2	<2	<2	<2	10	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-4	UG/L	3/1/1990		120	<0.5	19								<0.5		<0.5	3.2		8.3	<0.5	<0.5
W-4	UG/L	4/1/1990		28	1.4	4.8			<u> </u>			 		<1		<1	0.81		2.2	<1	4.3
W-4	UG/L	12/18/1996	420	80	<5	<5			<10		<5	<5	<5	<5		<5	<5		<5	<5	<10
W-4	UG/L	1/14/1998	920	120	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-4	UG/L	8/20/1998	500	57	<5	<5			18 20		<10	<5	<5	<5		<5	<5		<5	<5	9.8
W-4 W-4	UG/L UG/L	1/29/1999 7/19/1999	460 710	55 72	<5 <2	<5 <2		1	<2	1	<10 <20	<5 <2	<5 <2	<5 <2		<5 <2	<5 <2	+	<5 <2	<5 <1	11 <1
W-4	UG/L	1/13/2000	660	49	<1	<1			<1		<10	<1	<1	<1		<1	1.3		<1	<0.5	13
W-4	UG/L	8/3/2000	<500	47	<1	<1					<10	<1	<1	<1		1.2	<1		<1	<0.5	12
W-4	UG/L	2/8/2001	<500	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1.1	0.67	7
W-4	UG/L	7/26/2001	320	42	<1	<1			<1	60000	<10	<1	<1	<1		<1	<1		1	<0.5	<0.5
W-4 W-4	UG/L UG/L	5/8/2002 9/25/2002	250 290	33 62	<1 <1	<1 <1		1	<1 <1	60000 45000	<10 <1	<1 <1	<1 <1	<1 <1		3.8	<1 <1	+	1.3 2	<0.5 <0.5	5.2 <0.5
W-4	UG/L	7/1/2004	350	30	2.6	1.9	0.66	<0.5	<5	<100	<5	<5	<5	<5		1J	3J		2J	<5	11
W-4	UG/L	10/6/2005	350	31	<1	<1	<1	<1	<1	47	<10	<1	<1	<1		<1	6.4		1.7	<0.5	1.3
W-4	UG/L	2/15/2006	501	43	<5	<5	<5	<5	<1	38	<5	<5	<5	<5		<5	2.8		2.5	<5	2.4
W-4	UG/L	8/3/2006	2800	3.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	4.5		<2	<2	<5
W-4 W-4	UG/L UG/L	11/9/2006 2/8/2007	230 200	6.1 3.1	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	5.1 4.7		<2 <2	<2 <2	<5 <5
W-4	UG/L	5/10/2007	170	1.5	<2	<2	<2	<2	1.6	30	<5	<2	<2	<2		<2	3.8		<2	<2	1
W-4	UG/L	8/9/2007	280	1	<2	<2	<2	<2	2	18	<5	<2	<2	<2		<2	3.2		<2	<2	0.59
W-4	UG/L	11/7/2007	180	1.9	<0.36	<0.25	<0.6	<0.3	1.4	22	<0.41	<0.23	<0 26	<0.32		<0.27	3.6		0.36	<0.28	<0 3
W-4	UG/L	2/7/2008	210	4.4	<2	<2	<2	<2	<5	55	<1	<2	<2	<2		<1	4.4		<2	<2	<5
W-4	UG/L	2/7/2008	250	3.9	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	4		<2	<2	<5

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-4	UG/L	1/19/2009	140	0.51	<2	<2	<2	<2	<5	47	0.43	<2	<2	<2		<2	7.6		1	<2	1.8
W-4 W-4	UG/L UG/L	4/27/2009 3/5/2010	92 600	<2 1.5	<2 <0.50	<2 <0.50	<2	<2 <0.50	<5 <1.0	34 <10	<5 <10	<2 <1.0	<2 <1.0	<2 <1.0		<2 <1 0	7.3 3.7		0.61 <1.0	<2 <0.50	1.9 7.4
W-4	UG/L	5/13/2010	700	4.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	3.1		<1.0	<0.50	5.4
W-4	UG/L	8/6/2010	570	68	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	4.0		<1.0	<0.50	7.2
W-4	UG/L	11/4/2010	980	180	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	4.8
W-4	UG/L UG/L	2/8/2011	1800 1400	480 460	<0.50 0.59	1.2	<1.0 <1.0	<0.50 <0.50	<1.0 1.1	<10 38	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	1.0 1.2	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	8.6
W-4 W-4	UG/L UG/L	4/14/2011 8/25/2011	840	190	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	11 1.8
W-4	UG/L	11/14/2011	1200	390	<2.5	0.76	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-4	UG/L	2/6/2012	1100	410	<0.50	0.79	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	6.2
W-4 W-4	UG/L UG/L	5/7/2012 8/27/2012	910 910	140 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 1.9	21 24	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	4.1 2.8
W-4	UG/L	11/5/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	6.3	2.5	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
		, , , ,					-					-	-	-	-	-	-		-		
W-7	UG/L	8/4/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	<1		<1	<0.5		1.2	<1	<0.5
W-7 W-7	UG/L UG/L	2/8/2001	<500 <100	<0.5 <0.5	<1	<1			<1		<10 <10	<1	<1 <1	<1		<1 <1	<1		<1 <1	<0.5 <0.5	<0.5 <0.5
W-7	UG/L	7/26/2001 5/7/2002	<100	<0.5	<1 <1	<1 <1			<1 <1	<10000	<10	<1 <1	<1	<1 <1		<1	<1 <1		<1	<0.5	<0.5
W-7	UG/L	9/24/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	10/7/2005	<100	<0.5	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7 W-7	UG/L	2/16/2006	60 9 <50	<1 <2	<5 <2	<5 <2	<5 <2	<5	<1	<10 <50	<5 <5	1.1	<5 <2	<5 <2		<5 <2	<5 <2		<5 <2	<5 <2	<5
W-7	UG/L UG/L	8/4/2006 11/10/2006	<50 <50	<2	<2	<2	<2	<2 <2	<5 <5	<50 <50	<5	<2 <2	<2	<2		<2	<2		<2	<2	<5 <5
W-7	UG/L	2/9/2007	<50	<2	<2	<2	2.6	<2	<5	<50	<5	2.2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	5/8/2007	31	0.41	0.45	0.87	1.4	0.75	<5	<50	0.9	1.4	0.35	<2		<2	<2		0.41	<2	<5
W-7 W-7	UG/L UG/L	8/10/2007 11/6/2007	<50 <30	<2 <0.28	<2 <0.36	0.25 <0.25	<2 <0.6	<2 <0.3	<5 <0.32	<50 <4.9	<5 <0.41	<2 <0.23	<2 <0 26	<2 <0.32		<2 <0.27	<2 <0.32		<2 <0.27	<2 <0.28	<5 <0.3
W-7	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	4/21/2009	<50	0.31	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		1.7	<2	<5
W-7 W-7	UG/L UG/L	3/4/2010 5/17/2010	65 60	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0 50 0.51	<1.0 <1.0	<10 <10	<1 0 2.3	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1 0 <1 0	<1.0 <1.0		2.0 1.9	<0.50 <0.50	<1 0 <1 0
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.51	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		2.6	<0.50	<10
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	<1.0		2.6	<0.50	<10
W-7	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	2.5	<0.50	<10
W-7 W-7	UG/L UG/L	2/2/2011 4/14/2011	<50 <50	<0.50 0.57	<0.50 0.55	<0.50 0.51	<1.0 <1.0	<0 50 0.57	<1.0 <1.0	<10 <10	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	1.4 2.8	<0.50 <0.50	<1 0 <1 0
W-7	UG/L	8/24/2011	<50 <50	0.52	0.50	0.53	<1.0	0.53	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.8	<0.50	<10
W-7	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	0.51	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.8	<0.50	<10
W-7	UG/L	11/10/2011	<50	<0.50	<0.50	0.56	<1.0	0.61	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.8	<0.50	<10
W-7 W-7	UG/L	2/8/2012 5/9/2012	<50 57	<0.50 <0.50	<0.50 <0.50	0.57	<1.0 <1.0	0.59 <0.50	<1.0	<10 <10	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	1.6 1.6	<0.50 <0.50	<10
W-7	UG/L UG/L	8/29/2012	<50	<0.50	<0.50	<0.50 <0.50	<1.0	<0.50	<1.0 <1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<1 0 <1 0
W-7	UG/L	11/7/2012	<50	0.53	<0.50	0.64	<1.0	0.57	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	8/4/2000	<500 NS	2.8 NS	<4.6 NS	<1 NS			<1 NS		<1 NS	<1 NS	<1 NS	<1 NS		<1 NS	<1 NS		<1 NS	<0.5 NS	<0.5
W-8 W-8	UG/L UG/L	2/6/2001 7/26/2001	180	0.67	NS <1	NS <1			NS <1		NS <1	NS <1	NS <1	NS <1		NS <1	NS <1		NS <1	NS <5	NS <0.5
W-8	UG/L	5/7/2002	180	0.51	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	UG/L	9/24/2002	<100	0.64	<1	<1	2.22	2.5	<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5 .5	<0.5
W-8 W-8	UG/L UG/L	7/1/2004 10/6/2005	390 220	1.9J 0.52	1.8	0.72 <1	0.92 <1	<0.5 <1	<5 <1	<100 <10	<5 <10	<5 <1	<5 <1	<5 <1		<5 <1	<5 <1		<5 <1	<5 <0.5	<5 <0.5
W-8	UG/L	2/16/2006	192	<1	<5	<5	<5	<5	<1	<10	<5	<5	<5	<5		<5	<5		<5	<5	<5
W-8	UG/L	8/4/2006	130	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	11/10/2006	210	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8 W-8	UG/L UG/L	2/9/2007 5/8/2007	130 110	<2 0.49	<2 0.73	<2 0.33	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 0 23	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-8	UG/L	8/7/2007	170	0.49	0.73	0.33	<2	0.38	<5	<50	<5 <5	0.3	<2	<2		<2	<2		<2	<2	<5 <5
W-8	UG/L	11/6/2007	160	0.52	0.75	0.4	<0.6	0.3	<0.32	7.5	<0.41	<0.23	<0 26	<0.32		<0.27	<0.32		<0.27	<0.28	<0 3
W-8	UG/L	2/4/2008	160	0.46	0.81	0.39	<2	<2	<5 .5	<50	<5 	0 25	<2	<2		<2	<2		<2	<2	<5
W-8 W-8	UG/L UG/L	1/13/2009 4/21/2009	120 150	<2 0.45	<2 0.82	<2 0.37	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-8	UG/L	3/4/2010	220	<0.50	0.85	<0.50	^2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-8	UG/L	5/17/2010	200	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	<1.0		<1.0	<0.50	<10
W-8	UG/L	5/17/2010	210	<0.50	0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	-	<10	<1.0		<1.0	<0.50	<10
W-8	UG/L	8/4/2010	110	<0.50	0.80	<0.50	-1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	-1.0	<10	<1.0 <1.0	-1.0	<1.0	<0.50	<10
W-8 W-8	UG/L UG/L	11/4/2010 2/7/2011	140 130	<0.50 <0.50	0.60	<0.50 <0.50	<1.0 <1.0	<0 50 <0 50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1 0 <1 0
W-8	UG/L	4/21/2011	130	0.57	1.1	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	4/21/2011	140	0.56	10	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	9/1/2011	2000	0.57	0.77	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-8	UG/L	11/10/2011	110	<0.50	0.64	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	2/7/2012	90	<0.50	0.73	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	5/10/2012	180	<0.50	0.87	<0.50	<1.0	<0 50	<1.0	<10	2.9	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	8/29/2012	190	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-8	UG/L	11/7/2012	62	0.50	0.75	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-9	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	2/6/2007	67	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	5/9/2007	50	<2	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		<2	2		<2	<2	<5
W-9	UG/L	8/7/2007	38	<2	<2	<2	<2	<2	<5	22	<5	<2	<2	<2		0.31	3		<2	<2	<5
W-9	UG/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	19	<0.41	<0.23	<0 26	<0.32		0.31	3.8		<0.27	<0.28	<0 3
W-9	UG/L	2/5/2008	<50	<2	<2	<2	<2	<2	<5	23	0.5	<2	<2	<2		0.3	3.4		<2	<2	<5
W-9	UG/L	1/15/2009	46	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	3.2		<2	<2	<5
W-9	UG/L	4/23/2009	36	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	2.6		<2	<2	<5
W-9	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50		<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	1.9		<1.0	<0.50	<10
W-9	UG/L	5/12/2010	80	<0.50	<0.50	<0.50		<0 50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<10	2.8		<1.0	<0.50	<10
W-9	UG/L	8/4/2010	67	<0.50	<0.50	<0.50		<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0		<10	4.0		<1.0	<0.50	<10
W-9	UG/L	11/3/2010	87	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	3.2	<1.0	<1.0	<0.50	<10
W-9	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	1.5	<1.0	<1.0	<0.50	<10
W-9	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	5.9	<1.0	<1.0	<0.50	<10
W-9	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	2.4	<1.0	<1.0	<0.50	<10
W-9	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	2.1	<1.0	<1.0	<0.50	<10
W-9	UG/L	2/8/2012	59	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	13	<10	<1.0	<1.0	<1.0	<1.0	<10	1.8	<1.0	<1.0	<0.50	<10
W-9	UG/L	5/9/2012	89	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	29	<10	<1.0	<1.0	<1.0	<1.0	<10	2.3	<1.0	<1.0	<0.50	<10
W-9	UG/L	8/28/2012	70	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10
W-9	UG/L	11/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0 50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<0.50	<10

NOTES: PCE - Tetrachloroethylene

TCE - Trichloroethylene

c1,2-DCE - cis-1,2-Dichloroethene

t1,2-DCE - trans-1,2-Dichloroethene

1,1-DCE - 1,1-Dichloroethene 1,2-DCA - 1,2-Dichloroethane

1,3,5-TMB - 1,3,5-Trimethylbenzene

1,2,4-TMB - 1,2,4-Trimethylbenzene

VC - Vinyl Chloride

B- Benzene

T - Toluene E - Ethylbenzene

X - Xylenes, total

nBUT - n-Butylbenzene

sBUT - sec-Butylbenzene

tBUT - tert-Butylbenzene

nPRO - n-Propylbenzene

1,1 DCA - 1,1-Dichloroethane

ISO-P - Isopropylbenzene MC - Methylene Chloride

NAP - Naphthalene

TRIM - Trichlorofluoromethane

PMXY - p/m-Xylenes

OXYL -o-Xylene DIPE - Diisopropyl Ether (DIPE)

MTBE - Methyl-tert-Butyl Ether (MTBE) TBA - tert-Butyl Alcohol (TBA)

ND - Not Detected above laboratory detection limits

UG/L - Micrograms per litre

NA - Information not available

Table IV Summary of Field Test Parameters Former Powerine Refinery Santa Fe Springs, California 4Q2012

W. II.ID	Comple Bolls	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-104A	12/18/2009	7.31	5.31	3
MW-104A	3/3/2010	6.93	1.65	66
MW-104A	5/11/2010	8.06	NM	19
MW-104A	8/4/2010	7.65	2.32	205
MW-104A	11/3/2010	8.06	2.00	131
MW-104A	2/2/2011	8.46	3.05	136.4
MW-104A	4/14/2011	8.10	2.85	128.5
MW-104A	8/24/2011	7.53	4.47	19.6
MW-104A	11/10/2011	7.38	5.47	67
MW-104A	2/9/2012	8.79	2.42	-14.5
MW-104A	5/9/2012	8.18	4.36	-39.3
MW-104A	8/27/2012	7.69	1.96	51.9
MW-104A	11/6/2012	NM	NM	NM
MW-106A	12/17/2009	7.25	7.29	-112
MW-106A	3/5/2010	6.73	4.71	116
MW-106A	5/13/2010	8.06	7.90	-38
MW-106A	8/6/2010	8.05	4.52	210
MW-106A	11/4/2010	8.23	3.09	77
MW-106A	2/3/2011	NM	NM	NM
MW-106A	4/19/2011	NM	NM	NM
MW-106A	8/25/2011	7.67	2.98	-28.1
MW-106A	11/14/2011	7.03	4.74	33
MW-106A	2/3/2012	NM	NM	NM
MW-106A	8/24/2012	NM	NM	NM
MW-106A	11/6/2012	NM	NM	NM
MW-107A	12/17/2009	7.20	6.99	-276
MW-107A	3/5/2010	8.70	1.81	-307
MW-107A	5/13/2010	8.30	NM	-370
MW-107A	8/6/2010	8.10	3.25	-280
MW-107A	11/4/2010	8.16	2.04	-245
MW-107A	2/3/2011	8.49	3.42	-338
MW-107A	4/19/2011	8.02	1.93	-276.8
MW-107A	8/25/2011	7.82	2.68	-216.7
MW-107A	11/14/2011	7.19	3.73	-161.3
MW-107A	1/31/2012	8.88	2.6	-240
MW-107A	5/8/2012	8.40	2.34	-273.6
MW-107A	8/24/2012	8.12	2.89	-226.7
MW-107A	11/6/2012	8.27	2.38	-236.7
MW-503B	12/15/2009	6.92	7.78	-137

Table IV Summary of Field Test Parameters Former Powerine Refinery Santa Fe Springs, California 4Q2012

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-503B	3/8/2010	7.33	3.38	-96
MW-503B	5/17/2010	8.18	1.79	-69
MW-503B	8/9/2010	7.60	2.72	147
MW-503B	11/8/2010	7.62	2.93	7
MW-503B	2/4/2011	7.96	2.16	-46
MW-503B	4/15/2011	7.61	1.74	-46.4
MW-503B	8/29/2011	7.50	2.57	-96.1
MW-503B	11/16/2011	6.76	3.01	-41.3
MW-503B	1/31/2012	8.50	3.06	-150.6
MW-503B	5/8/2012	7.73	2.46	-145.0
MW-503B	8/30/2012	8.05	2.50	-13.0
MW-503B	11/5/2012	8.00	2.06	96.5
W-1	12/15/2009	7.62	7.10	-39
W-1	3/5/2010	7.51	3.15	-111
W-1	5/13/2010	8.07	2.02	-197
W-1	8/6/2010	7.52	3.22	-22
W-1	11/5/2010	8.13	2.75	38
W-1	2/4/2011	8.18	4.84	-63.7
W-1	4/14/2011	7.65	1.94	37.3
W-1	8/26/2011	7.47	3.16	-86
W-1	11/14/2011	7.08	2.9	-75.9
W-1	2/6/2012	7.99	2.87	-79.4
W-1	5/7/2012	7.85	3.03	-62.4
W-1	8/27/2012	7.90	2.69	-60.4
W-1	11/5/2012	7.82	2.47	-40.0
W-4	12/15/2009	8.27	9.40	21
W-4	3/5/2010	7.09	3.41	-101
W-4	5/13/2010	8.00	3.87	-66
W-4	8/6/2010	7.74	3.48	16
W-4	11/4/2010	7.75	3.50	45
W-4	2/8/2011	7.67	5.53	-3.5
W-4	4/14/2011	7.79	4.47	107.8
W-4	8/25/2011	7.54	4.75	-92.5
W-4	11/14/2011	6.88	4.49	-47.3
W-4	2/6/2012	8.36	3.7	-53.2
W-4	5/7/2012	8.10	3.24	-54
W-4	8/27/2012	8.08	3.84	11.7
W-4	11/5/2012	8.18	3.95	20.2
W-8	12/18/2009	10.11	7.07	-230

W. IIIB	Control Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-9	3/3/2010	7.53	5.66	69
W-9	5/12/2010	8.07	7.15	-175
W-9	8/4/2010	7.36	3.36	-60
W-9	4/5/2011	7.71	4.07	82.3
W-9	8/24/2011	7.62	4.9	-4.9
W-9	11/10/2011	NM	NM	NM
W-9	2/8/2012	8.32	3.95	61.8
W-9	5/9/2012	7.77	3.69	-49.5
W-9	8/28/2012	7.70	2.61	36.6
W-9	11/7/2012	NM	NM	NM
W-10	12/18/2009	7.21	6.89	-97
W-10	3/8/2010	NM	NM	NM
W-10	5/17/2010	NM	NM	NM
W-10	8/9/2010	NM	NM	NM
W-10	11/3/2010	7.53	3.39	-10
W-10	11/8/2010	NM	NM	NM
W-10	2/2/2011	7.83	3.57	41.6
W-10	2/8/2011	7.28	5.51	-103
W-10	4/15/2011	NM	NM	NM
W-10	8/29/2011	7.14	2.7	-130.2
W-10	11/10/2011	NM	NM	NM
W-10	2/8/2012	NM	NM	NM
W-10	5/10/2012	NM	NM	NM
W-10	8/28/2012	NM	NM	NM
W-10	11/7/2012	NM	NM	NM
W-11	12/8/2010	NM	NM	NM
W-11	2/4/2011	7.67	5.62	-119
W-11	4/15/2011	7.58	1.68	-77
W-11	8/29/2011	7.35	2.2	-125.7
W-11	11/14/2011	6.93	2.63	-148.6
W-11	2/8/2012	8.38	3.3	45.6
W-11	5/10/2012	7.84	2.75	-76.5
W-11	8/28/2012	7.50	1.56	-122.5
W-11	11/8/2012	7.92	1.75	24.7
W-12	12/18/2009	6.99	6.96	0
W-12	3/4/2010	7.53	3.15	-63
W-12	5/12/2010	7.87	NM	-180
W-12	8/5/2010	7.61	2.65	-100
W-12	11/4/2010	7.88	2.64	7

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-12	2/3/2011	8.28	2.85	-99
W-12	4/19/2011	7.77	2.10	15.2
W-12	8/25/2011	7.50	2.78	-58.5
W-12	11/14/2011	6.93	3.77	-34.7
W-12	2/8/2012	8.13	2.57	-113
W-12	5/9/2012	7.89	3.22	-74.5
W-12	8/30/2012	7.63	2.15	-98.7
W-12	11/8/2012	7.88	2.31	-42.6
W-14A	12/15/2009	7.65	7.76	-23
W-14A	3/1/2010	6.61	4.09	58
W-14A	5/10/2010	8.63	2.74	2
W-14A	8/2/2010	8.02	3.12	145
W-14A	11/1/2010	8.30	2.87	46
W-14A	1/31/2011	8.30	13.16	185.4
W-14A	4/4/2011	8.29	4.81	89.6
W-14A	8/22/2011	7.87	10.15	22.8
W-14A	11/7/2011	7.40	5.23	151.6
W-14A	1/30/2012	8.06	1.48	2.6
W-14A	8/20/2012	8.10	3.44	-76.9
W-14A	10/29/2012	8.23	3.01	22.5
W-14B	12/15/2009	8.37	7.79	97
W-14B	3/1/2010	7.72	2.60	-5
W-14B	5/10/2010	8.43	3.00	-172
W-14B	8/2/2010	7.80	4.60	33
W-14B	11/1/2010	8.13	3.37	37
W-14B	1/31/2011	8.17	19.82	194
W-14B	4/4/2011	8.27	5.95	82.6
W-14B	8/22/2011	7.95	7.90	22.7
W-14B	11/7/2011	7.22	4.92	67.8
W-14B	1/30/2012	8.70	2.90	-133.7
W-14B	8/20/2012	8.27	4.00	-30.3
W-14B	10/29/2012	8.21	3.49	-18.2
W-14C	12/15/2009	8.24	8.57	77
W-14C	3/1/2010	7.22	2.43	188
W-14C	5/10/2010	8.17	0.80	-77
W-14C	8/2/2010	7.60	3.55	128
W-14C	11/1/2010	7.89	3.15	49
W-14C	1/31/2011	7.88	10.85	188
W-14C	4/4/2011	7.98	3.27	51.3

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-14C	8/22/2011	7.76	4.24	-3.7
W-14C	11/7/2011	7.33	7.47	59.2
W-14C	1/30/2012	8.75	3.65	-65.2
W-14C	5/1/2012	8.18	4.07	41.5
W-14C	8/20/2012	8.18	4.95	5.1
W-14C	10/29/2012	8.16	3.77	-20.0
W-15A	12/14/2009	7.31	9.15	85
W-15A	3/2/2010	7.12	2.67	202
W-15A	5/10/2010	7.90	NM	-228
W-15A	8/2/2010	7.39	1.96	-145
W-15A	11/1/2010	7.67	2.85	32
W-15A	2/1/2011	7.89	2.05	-33
W-15A	4/5/2011	8.00	2.60	-81.7
W-15A	8/23/2011	7.47	4.96	-148.7
W-15A	11/8/2011	(FPPH)	(FPPH)	(FPPH)
W-15A	2/2/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	5/2/2012	8.06	3.26	-26.4
W-15A	8/21/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	10/30/2012	(FPPH)	(FPPH)	(FPPH)
W-15B	12/14/2009	7.39	7.44	-58
W-15B	3/2/2010	7.61	2.39	94
W-15B	5/11/2010	8.09	4.36	-15
W-15B	8/3/2010	7.74	3.42	107
W-15B	11/2/2010	8.06	3.18	40
W-15B	2/1/2011	8.15	4.58	286
W-15B	4/5/2011	8.10	2.92	62.4
W-15B	8/23/2011	7.56	3.85	-2.1
W-15B	11/10/2011	7.10	3.07	28.3
W-15B	2/2/2012	8.17	2.31	-69.2
W-15B	5/2/2012	8.00	3.41	-11
W-15B	8/20/2012	8.10	5.08	64.6
W-15B	10/30/2012	8.21	2.80	123.6
W-15C	12/14/2009	7.16	7.18	-53
W-15C	3/2/2010	7.33	2.27	148
W-15C	5/11/2010	8.16	4.73	-21
W-15C	8/3/2010	7.60	2.72	108
W-15C	11/2/2010	7.55	2.40	62
W-15C	2/1/2011	7.81	4.58	123.7
W-15C	4/5/2011	7.92	2.85	109

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-15C	8/23/2011	7.54	4.32	-2.4
W-15C	11/8/2011	7.32	6.00	119.4
W-15C	1/31/2012	8.72	3.11	-60.3
W-15C	5/2/2012	8.00	3.50	6
W-15C	8/21/2012	8.12	2.90	125.7
W-15C	10/30/2012	8.13	2.55	99.3
W-16A	12/16/2009	7.62	6.90	-62
W-16A	3/5/2010	7.03	3.47	-5
W-16A	5/14/2010	8.28	2.23	-54
W-16A	8/9/2010	7.98	2.65	106
W-16A	11/5/2010	8.03	6.15	48
W-16A	2/7/2011	7.82	4.09	249
W-16A	4/18/2011	7.88	4.00	94.9
W-16A	8/26/2011	7.73	4.11	-73.4
W-16A	11/8/2011	7.07	4.36	77.6
W-16A	2/3/2012	8.49	3.67	-70.0
W-16A	5/3/2012	7.86	4.09	50.0
W-16A	8/22/2012	7.77	2.47	-77.5
W-16A	10/31/2012	8.15	4.03	113.1
W-16B	12/16/2009	8.23	7.61	-184
W-16B	3/8/2010	8.15	3.20	-236
W-16B	5/14/2010	8.62	0.77	-310
W-16B	8/9/2010	8.01	2.88	-217
W-16B	11/5/2010	8.30	2.68	-119
W-16B	2/7/2011	8.12	3.54	-297
W-16B	4/18/2011	8.47	2.56	-247
W-16B	8/26/2011	8.01	2.72	-217.4
W-16B	11/8/2011	6.89	8.68	-63.8
W-16B	2/3/2012	9.21	2.55	-206.7
W-16B	5/3/2012	8.74	3.06	-194.3
W-16B	8/22/2012	8.62	2.90	-200.0
W-16B	10/31/2012	8.62	3.88	-189.5
W-16C	12/16/2009	8.15	7.12	-206
W-16C	3/8/2010	8.33	3.64	-237
W-16C	5/14/2010	8.68	NM	-295
W-16C	8/9/2010	8.02	2.57	-165
W-16C	11/5/2010	8.24	2.37	-72
W-16C	2/7/2011	8.03	4.34	-285
W-16C	4/18/2011	8.55	2.88	-249.5

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-16C	8/26/2011	7.81	2.71	-223.2
W-16C	11/9/2011	7.57	6.94	-185
W-16C	2/3/2012	8.84	2.51	-253.2
W-16C	5/3/2012	8.52	3.00	-205.8
W-16C	8/22/2012	8.30	2.60	-138.7
W-16C	10/31/2012	8.25	2.93	-185.2
W-17A	12/18/2009	8.02	7.10	30
W-17A	3/3/2010	6.67	5.41	74
W-17A	5/12/2010	8.25	0.88	-40
W-17A	8/4/2010	7.78	2.35	62
W-17A	11/3/2010	8.17	2.95	76
W-17A	2/2/2011	8.36	5.96	349
W-17A	4/20/2011	7.85	3.51	-5.8
W-17A	8/24/2011	7.85	3.23	2.6
W-17A	11/9/2011	7.19	4.78	-13
W-17A	2/7/2012	8.46	2.87	-20
W-17A	5/4/2012	8.20	3.45	-43.8
W-17A	8/23/2012	8.12	2.36	20.5
W-17A	11/1/2012	8.28	3.09	78.2
W-17B	12/18/2009	8.49	7.18	-173
W-17B	3/3/2010	7.87	4.80	-197
W-17B	5/12/2010	8.35	NM	-313
W-17B	8/5/2010	7.96	2.31	-189
W-17B	11/3/2010	8.09	2.56	-25
W-17B	2/2/2011	8.43	3.45	-269
W-17B	4/20/2011	8.11	3.32	-168.5
W-17B	8/24/2011	7.88	3.41	-153.7
W-17B	11/9/2011	7.52	2.94	-136.4
W-17B	2/7/2012	8.65	2.50	-174.3
W-17B	5/4/2012	8.40	2.87	-118.7
W-17B	8/23/2012	8.25	2.13	-156.5
W-17B	11/1/2012	8.45	2.35	-97.2
W-17C	12/18/2009	8.79	8.74	-177
W-17C	3/4/2010	7.96	5.90	-209
W-17C	5/12/2010	8.49	3.03	-322
W-17C	8/5/2010	8.01	2.64	-167
W-17C	11/3/2010	8.16	2.79	-120
W-17C	2/2/2011	8.47	3.96	-301
W-17C	4/20/2011	8.26	2.08	-223.7

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-17C	8/24/2011	7.94	3.12	-201.7
W-17C	11/9/2011	7.43	3.36	-159.7
W-17C	2/7/2012	8.80	2.73	-226.4
W-17C	5/4/2012	8.50	2.56	-168.5
W-17C	8/23/2012	8.39	2.39	-177.5
W-17C	11/1/2012	8.48	2.87	-151.4
EW-1	2/3/2011	7.90	6.61	-258
EW-1	4/13/2011	8.15	2.86	-210
EW-1	8/29/2011	7.62	2.74	-293
EW-1	11/16/2011	(FPPH)	(FPPH)	(FPPH)
EW-1	2/6/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	5/7/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	8/24/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	11/13/2012	(FPPH)	(FPPH)	(FPPH)
MW-701	2/4/2011	6.09	NM	NM
MW-701	4/11/2011	7.60	3.67	180.6
MW-701	8/30/2011	7.50	3.98	-31.2
MW-701	11/16/2011	6.90	2.93	25.9
MW-701	2/1/2012	8.18	4.3	-58.5
MW-701	5/11/2012	7.89	3.45	-8.8
MW-701	8/31/2012	7.97	4.00	28.7
MW-701	11/13/2012	7.88	3.00	161.0
MW-702	2/4/2011	6.04	NM	NM
MW-702	4/12/2011	7.70	3.29	103.1
MW-702	8/30/2011	7.34	3.23	-155.3
MW-702	11/16/2011	7.07	2.67	-172.7
MW-702	2/9/2012	7.89	4.73	-60.7
MW-702	5/11/2012	7.77	3.14	-99.9
MW-702	8/31/2012	7.76	3.48	-92.8
MW-702	11/13/2012	7.74	2.77	-116.3
MW-703	2/4/2011	6.25	NM	NM
MW-703	4/12/2011	7.57	3.53	132.4
MW-703	8/30/2011	7.30	4.2	-87.1
MW-703	11/17/2011	6.92	2.77	-98
MW-703	2/14/2012	8.11	4.07	-26.3
MW-703	5/11/2012	7.85	3.13	-72.6
MW-703	8/31/2012	7.68	3.20	-21.3
MW-703	11/14/2012	NM	NM	NM
MW-704	2/9/2011	6.08	NM	NM

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-704	4/13/2011	7.46	4.60	134.6
MW-704	8/31/2011	7.40	4.02	99.4
MW-704	11/17/2011	6.93	2.51	-148.8
MW-704	2/14/2012	7.80	4.2	-31.6
MW-704	5/14/2012	7.60	5.25	-30.0
MW-704	9/4/2012	7.87	2.85	31.7
MW-704	11/14/2012	NM	NM	NM
MW-705	2/4/2011	6.01	NM	NM
MW-705	4/12/2011	7.79	3.40	127.6
MW-705	8/31/2011	7.78	3.7	-55.5
MW-705	11/17/2011	7.04	3.16	-130.7
MW-705	2/14/2012	8.12	4.09	-57.6
MW-705	5/14/2012	7.88	2.50	-65.0
MW-705	9/4/2012	7.80	3.47	-28.4
MW-705	11/14/2012	NM	NM	NM
MW-706	2/4/2011	6.21	NM	NM
MW-706	4/11/2011	7.99	4.02	158.7
MW-706	8/31/2011	7.76	3.03	-41.2
MW-706	11/18/2011	6.93	3.06	180.8
MW-706	2/14/2012	8.16	3.00	-52.7
MW-706	5/14/2012	7.87	2.77	-63.5
MW-706	9/4/2012	7.84	3.24	18.2
MW-706	11/15/2012	8.04	3.31	-26.4
MW-707	2/4/2011	6.22	NM	NM
MW-707	4/8/2011	7.89	3.24	51.9
MW-707	9/1/2011	7.30	3.73	-9.4
MW-707	11/18/2011	6.89	2.8	11.3
MW-707	2/1/2012	8.19	3.1	-147
MW-707	5/15/2012	7.75	2.50	-72.6
MW-707	9/4/2012	7.55	3.26	-44.5
MW-707	11/15/2012	7.64	2.13	-88.8
MW-708	2/4/2011	5.99	NM	NM
MW-708	4/6/2011	7.84	3.03	-119.8
MW-708	9/1/2011	7.51	3.45	-147.2
MW-708	11/18/2011	7.00	3.56	-161.3
MW-708	2/10/2012	8.09	2.75	-140.2
MW-708	5/15/2012	7.79	2.36	-136.1
MW-708	9/5/2012	7.78	2.39	-113.1
MW-708	11/16/2012	7.90	2.50	-133.6

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-709	2/4/2011	6.27	NM	NM
MW-709	4/6/2011	8.08	3.74	149.6
MW-709	9/1/2011	7.38	2.97	-37
MW-709	11/21/2011	6.76	2.97	148.5
MW-709	2/10/2012	8.08	2.61	-57.1
MW-709	5/16/2012	7.70	3.12	9.3
MW-709	9/5/2012	7.82	2.07	-113.1
MW-709	11/16/2012	8.00	2.13	-78.2
MW-710	2/8/2011	6.18	NM	NM
MW-710	4/7/2011	7.88	3.54	97.7
MW-710	9/2/2011	6.87	3.68	-10.2
MW-710	11/21/2011	6.81	2.86	255.6
MW-710	2/1/2012	8.47	3.45	-64.8
MW-710	5/16/2012	7.80	4.04	21.5
MW-710	9/5/2012	7.85	2.32	30.5
MW-710	11/16/2012	7.97	3.57	43.4
MW-711	2/8/2011	5.99	NM	NM
MW-711	4/6/2011	7.91	3.39	-59.2
MW-711	9/2/2011	7.06	3.54	-99.8
MW-711	11/21/2011	6.87	2.95	-133.6
MW-711	2/10/2012	8.04	3.45	-96.7
MW-711	5/16/2012	7.73	2.37	-73.0
MW-711	9/5/2012	7.76	2.04	-175.4
MW-711	11/16/2012	7.77	2.66	-59.8
MW-712	2/7/2011	6.03	NM	NM
MW-712	4/7/2011	7.74	3.08	21.7
MW-712	9/2/2011	7.10	2.68	-59.7
MW-712	11/21/2011	6.90	2.65	-90.4
MW-712	2/13/2012	7.90	3.88	-83.5
MW-712	5/17/2012	7.71	2.80	-13.3
MW-712	9/6/2012	7.68	1.87	-42.0
MW-712	11/19/2012	7.83	2.26	-50.0
MW-713	2/7/2011	6.13	NM	NM
MW-713	4/8/2011	7.95	3.84	99.5
MW-713	9/2/2011	7.20	3.13	-51.4
MW-713	11/22/2011	6.98	3.07	-28.7
MW-713	2/13/2012	7.97	3.65	-77.7
MW-713	5/17/2012	7.70	3.11	-13.1
MW-713	9/6/2012	7.62	2.16	-120.7

Well ID	Sample Date	pH (SU)	DO (mg/L)	ORP (mV)
MW-713	11/19/2012	7.79	2.72	-139.5
MW-714	2/8/2011	6.20	NM	NM
MW-714	4/7/2011	7.92	3.53	33.6
MW-714	9/2/2011	7.21	3.15	-63.4
MW-714	11/22/2011	6.96	2.77	-24.2
MW-714	2/13/2012	8.05	4.32	-70.5
MW-714	5/17/2012	4.60	3.00	-10.7
MW-714	9/6/2012	7.66	2.58	-50.0
MW-714	11/19/2012	7.81	3.04	-98.7
MW-715	2/14/2011	7.50	NM	NM
MW-715	4/8/2011	7.78	2.59	16.3
MW-715	9/2/2011	7.15	3.2	-89.8
MW-715	11/22/2011	6.90	2.73	-125.4
MW-715	2/1/2012	8.32	2.87	-174.2
MW-715	5/17/2012	4.20	2.58	-50.5
MW-715	9/6/2012	7.66	1.97	-98.9
MW-715	11/19/2012	7.85	3.62	-134.5

Notes:

DO dissolved oxygen mg/L milligram(s) per liter

mV millivolts

ORP oxidation-reduction potential

SU standard units NM Not Measured

SCALE: NOT TO SCALE

12345 LAKELAND ROAD SANTA FE SPRINGS, CALIFORNIA

SITE LOCATION MAP

PROJECT NO.:	1003-001-300	
DATE: 11-6-2012	4Q2012	
	WELL INFORMATION	

CENCO

PROJECT NAME:

WELL INFORMATION		
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	100.00	(ft.)
DEPTH TO WATER	92.89	(ft.)
HEIGHT OF WATER COLUMN	7.11	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 4.6926	(gal)
PURGE VOLUME	x3=14.0778	(gal)
PRODUCT THICKNESS		(ft.)

MW-1044

WELL NO

WELL CONDI	TION:	
WEATHER CO	ONDITIONS:	
Clear	SUMMY light breeze (90
PURGING AN	ID SAMPLING EQUIPMENT:	
YSI 556		
Interface pro	bbe (200')	

					PURGE DA	ATA					
	ge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odo
1	8		* PURGED DRI	10 <5	ad Dry	3/-					

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	* NO field parameters collected *
1	11-6-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Well 104A purged Dry at < 5 gallons.
1	10:00	ice	8015M - TPH-g	VOAs	3	HCL	1 a 11 a 1
							Allowed to recharge prior to sample rellect
							LL_104A_110612_01 @ 1000

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

		CENCO	0.00		-			WELL NO.	MW-106A		Bloomfield
ROJECT N	1 - 1	1003-001-	-300					SAMPLED B	Y: Frane Sosic		
ATE: //-	6-2012	4Q2012									
			INC. INCOSTATION				1	WELL NOTE:			
			WELL INFORMATION	1		12.0		WELL COND	OLFION:		
	SING ELEV.	710				(ft.)	-	C/K			
WELL DIAM	HETEN	4"	110.00			(inches)	-				
DEPTH OF			110.00			(ft.)		711	ONDITIONS:	0	nra
DEPTH TO	WATER		104.03			(ft.)		Clear/	SOURY / &	light win	1 /a 10
HEIGHT OF	WATER COLU	MN	5.97			(ft.)		- /	01	U	
ASING VO	DLUME*		Hgt. x- 0.163 Gal./Ft. = 3			(gal)		PURGING A	ND SAMPLING E	QUIPMENT:	
PURGE VOLUME $x3 = 11, 82$ (gal)								YSI 556			
PRODUCT THICKNESS						(ft.)		Interface pr	obe (200')		
					URGE DAT	-	1-		Т		
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	ρН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
	8										
	100		* DRU*								
					1						
	18										
	18										
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv-	*10	A NOTES:	roweters c	Mectal	*
	Sample Time Time	Packing	Analyses 8260B - VOCs + Oxys	Container	Quantity		* NO	Notes:	roweters c	ellected	*
	Sample Time Time		8260B - VOCs + Oxys			ative	* NO 106A	field po	roweters c	ollected	*
	Sample Time Time	íce		VOAs	3	ative HCL	* NO 106 A Allows	field po purged a	roweters c lary 25 bedge prio	allectal allows.	* ching so
	Sample Time Time	íce	8260B - VOCs + Oxys	VOAs	3	ative HCL	Allowed	purged a	lay 25 bodge prio	te colle	ching so

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-6-26	12 4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	104.05	(ft.)
HEIGHT OF WATER COLUMN	5.95	(ft.)
CASING VOLUME*	Hgt. x 9:153 Gal./Ft. = 3, 927	(gal)
PURGE VOLUME	0.66 x3= 11.481	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-107A	Bloomfield
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
Very E	DOD	
WEATHER C	ONDITIONS:	
Clear	sonny / light	wind a 90°F
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface pr	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cand.	Turbidity NTUs	DO mg/L	Temperature (F(C))	9/4	ORP M V	Color	Odor
1414	5		8.43	1.813	/	3.26	24.35	1.8/3	-235.6	Gray	Stran
1442	10		8.29	1.8/0	/	2.45	24.21	1.809	-231.1	Grosy	Strong
503	15		8.27	1.781	/	2.38	23.55	1.785	-236.7	Trous letter	Strand

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11-6-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1532	ice	8015M - TPH-g	VOAs	3	HCL	LL_107A_110612_01 @15:3

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

PROJECT N	1 - 1	1003-001-30	00			SAMPLED BY	: Frane Sosic				
DATE:	15/2012	4Q2012			-		_	WELL NOTES			
			WELL INFORMA	ATION				WELL CONDI	TION:		
TOP OF CA	SING ELEV.					(ft.)		NOT GO	DD.		
WELL DIAN	METER	<i>f</i> "				(inches)					
DEPTH OF	WELL	110	3.00			(ft.)		WEATHER CO	ONDITIONS;		20
DEPTH TO WATER (ft.)							Clear / Sunuy / Light Green (293)				
HEIGHT OF	WATER COLU	MN C	1.41			(ft.)	1	/		U	
CASING VOLUME* Hgt. x 0.66 Gal./Ft. = 6, 2106						(gal)	PURGING AND SAMPLING EQUIPMENT:				
PURGE VO	LUME		x 3	= 18.6318		(gal)	YSI 556				
PRODUCT	THICKNESS					(ft.)		Interface pro	be (200')		
					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/2	ORP ULV	Color	Odor
	5		7.99 7.98	1.861	-/	2.59	26.44	1.213	106.7	Cite gory	Strong
	15		8.00	1.863	1/	2.06	26.43	1.210	96.5	Gordey	Strong
Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES: [/	ell is Dryin	y up stouly	

3

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

11-5-12 ice

8260B - VOCs + Oxys

8015M - TPH-g

VOAs

VOAs

CENCO

PROJECT NAME:

HCL

HCL

2" well = 0.163 Gal./Foot

LL_503B_110512_01 @ 15:30

WELL NO.

MW-503B

Coaster

PROJECT NAME;	CENCO	WELL NO. W-I
PROJECT NO .:	1003-001-300	SAMPLED BY: Frane Sosic
DATE: 11/5/2012	4Q2012	
		WELL NOTES:
	WELL INFORMATION	WELL CONDITION:
to the same of the		Oden

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER 4"		(inches)				
DEPTH OF WELL	120.00	(ft.)				
DEPTH TO WATER	108.91	(ft.)				
HEIGHT OF WATER COLUMN	11.09	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7.3/94	(gal)				
PURGE VOLUME	x3=21.96	(gal)				
PRODUCT THICKNESS		(ft.)				

WELL NO.	W-1	Walker
SAMPLED B	: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
6000		
WEATHER C	ONDITIONS:	
Clear /S	unny / light	A breeze (1984
PURGING A	ND SAMPLING EQU	JIPMENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP M/	Color	Odor
047	5		7.87	2.545	1	2.28	25.68	1.653	56.7	Clear	Hill
133	10		7.84	2.540	/	1.97	25.45	1.651	43.1	Cloudy	Mich
156	15		7.77	2,532	1	2.69	25.20	1.645	-31.4	Clear	Heder
1238	20		7.82	2.534	1	2.47	25.23	1.646	-40.0	Clear	Mille
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:			
1	11.5.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	111	NI 1105	12_01	@ 13:0	2
1	140	ice	8015M - TPH-g	VOAs	3	HCL	7 44-4	14_1100		10.0	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

PROJECT NAME:	CENCO		WELL NO. W-4 Walker	
PROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic	
DATE: 11/5/2012	4Q2012			
' 1			WELL NOTES:	
	WELL INFORMATION		WELL CONDITION:	
TOP OF CASING ELEV.	- 11	(ft.)	NOT GOOD	
WELL DIAMETER	4"	(inches)		
DEPTH OF WELL	120.00	(ft.)	WEATHER CONDITIONS:	

EIGHT OF WATER COLUMN	O. Wale	(11.)		
ASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 6.6	(gal)	PURGING AND SAMPLING EQUIPMENT:	
JRGE VOLUME	x3=19.8	(gal)	YSI 556	Ī
RODUCT THICKNESS		(ft.)	Interface probe (200')	Ī
				4

(ft.)

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP M V	Color	Odor
839	5		8.17	2.247	1	2.89	24.38	1.488	-113.1	Cloudy	Strong
920	10		8.10	2.274	/	2.45	24.62	1.483	-55.9	Clordy	Stron
954	15		8.09	2.281	/	2.60	24.90	1.483	-34.3	Chear	Ston
1036	20		8.18	2.257	1	3.95	2097	1.469	20.2	Clear	Strong
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	1	NOTES:			
1	11.5.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1	945	ice	8015M - TPH-g	VOAs	3	HCL	LL-W	4_1105	12-01	@ 949	5

ADDITIONAL INFORMATION:

TOC = Top of well casing

DEPTH TO WATER

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-2-17	4Q2012	

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER 2	11	(inches)				
DEPTH OF WELL	110.00	(ft.)				
DEPTH TO WATER	97.43	(ft.)				
HEIGHT OF WATER COLUMN	12,57	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2. 04891	(gal)				
PURGE VOLUME	×3=6, 14673	(gal)				
PRODUCT THICKNESS		(ft.)				

WELL NO. V	N-11	Lakeland
SAMPLED BY: F	rane Sosic	
WELL NOTES:	Historically conta	ained FPPH
WELL CONDITIO	ON:	
GOOD		
WEATHER CON	DITIONS:	
Raine mo	7	1
Charly /wii	why offermen	G687
PURGING AND	SAMPLING EQUIPMEN	NT:
YSI 556		
Interface probe	(200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
945	5	VAC TRUCK	7.93	1.925	/	2.54	20.35	1.253	343	Olive gray	Very stro
1036	10	1	7.90	1.924	/	1.96	20,43	1.248	30.0	Gray	Very to
1144	15	1	7.92	1.923	/	1.45	20.45	1.250	24.7	Olive	Veru str

Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11-8-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1238	ice	8015M - TPH-g	VOAs	3	HCL	LL_WII_ 1/08/2_01 @ 1200

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-8-20	7/24Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	111	(inches)
DEPTH OF WELL	116.00	(ft.)
DEPTH TO WATER	102.59	(ft.)
HEIGHT OF WATER COLUMN	13.41	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2./8583	(gal)
PURGE VOLUME	x3=6,55749	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-12	Lakeland
SAMPLED BY:	Frane Sosic	
WELL NOTES:	May Be Dry	
WELL CONDITIO	ON:	
GOOD		
160 NO	windy 10-15	
_	SAMPLING EQUIPMEN	NT:
YSI 556		
Interface probe	2(200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TOS	ORP	Color	Odor
	3	VAC TRUCK	7.85	1.965	1	2.69	20,96	1.277	16.3	Olive	Hill
	6		7.85	1981	/	2.83	21.59	1.286	-52.3	Lite gray	Hill
	10		7.8%	1,993	/	2.31	20.95	1.295	-42.6	Clother	Hill

HCL U
HCL LL WIZ 1108/2 01 @ 1800
20.000000000000000000000000000000000000

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

2" well + 0.163 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.: ,	1003-001-300	
DATE: 10/29/12	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches
DEPTH OF WELL	1[3,00	(ft.)
DEPTH TO WATER	94.32	(ft.)
HEIGHT OF WATER COLUMN	18.68	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 3.04484	(gal)
PURGE VOLUME	x3=9.13452	(gal)
PRODUCT THICKNESS		(ft.)

WELL CONDITION:	
OK	
WEATHER CONDITIONS:	- 1
Cheer + SUMMY	(282°F)
PURGING AND SAMPLING	EQUIPMENT:
YSI 556	
Interface probe (200')	

					PURGE [DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS 9/L	ORP	Color	Odor
938	5	VAC TRUCK	8,03	1.571	/	3.45	21.45	1.021	113.6	Cloudy	Stiller
007	10		8.22	1.546		2.69	21.88	1.005	59.8	Cloudy	2012
025	15		8.23	1.565		3.01	21.46	1.018	22.5	Cloudes	Stall

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	10.29.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 111A 100010 01 0 10:34
1	10:37	ice	8015M - TPH-g	VOAs	3	HCL	LL-14A-102912-01 @ 10:37
							-
	1						

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

PROJECT	NAME.
LUCIECI	IAWINE"

CENCO

PROJECT NO .:

1003-001-300

DATE: 0/29/12

4Q2012

WELL NO.	
SAMPLED	E

MW-14B

Hospital

SAMPLED BY: Frane Sosic

WELL CONDITION:

OK

WEATHER CONDITIONS:

Clear + SUMMY (~ 85°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	167.00	(ft.)
DEPTH TO WATER	93.52	(ft.)
HEIGHT OF WATER COLUMN	73.48	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 11, 97724	(gal)
PURGE VOLUME	x3= 35.93	(gal)
PRODUCT THICKNESS		(ft.)

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature °C	TDS 9/L	ORP	Color	Odor
1147	5	VAC TRUCK	8.75	1.577	/	5.80	20.88	1.027	-12.7	Cloudy	Stigli
1204	10		8.21	1.602	/	3.04	20.75	1.041	12.4	Clouded	Slight
214	15	4	8.19	1.594	/	3.72	21.04	1.036	-5.5	Clear	Stoli

nearly 60 wis to get first 5 gollows.
WERTH COMMIS. TO ETS THIS I SANSONS.
148_102912_01 @ 13:20
1021-12201

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

(4Q2012)

DATE:

10-29-2012

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	g/L	ORP un V	Color	Odor
1225	20	VAC TRUCK	8.22	11.568	_	4.45	21.37	1.019	-20.3	Cheer	Sigle
234	25		8.19	1.590	-	3.67	21.29	1.034	-33.0	Clear	Strate
246	30		8.20	1.587	-	3.64	21.18	1.032	-25.4	Clear	Stight
302	35	1	8.21	1.587	-	3.49	21.95	1.031	-18.2	Clear	Signal
								-			-
				1							
					1				1	1	

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 10/29/12

4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	195.00	(ft.)
DEPTH TO WATER	93.75	(ft.)
HEIGHT OF WATER COLUMN	101.25	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 16.50375	(gal)
PURGE VOLUME	x3=49.5/125	(gal)
PRODUCT THICKNESS	-	(ft.)

WELL NO.	MW-14C	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
OK	
WEATHER CONDITIONS	
Clear + sonny	(285F)
PURGING AND SAMPLIN	NG EQUIPMENT:
YSI 5S6	
Interface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	g/L	ORP M/	Color	Odor
330	5	VAC TRUCK	8.20	1.700	/	4.20	23.72	1.113	13.1	Couly	Stigle
339	10		8.18	1.676	/	3.70	23.59	1.086	7.3	Cloudy	8786
1346	15	4	8.17	1.659	/	3.45	23.68	1.078	-1.6	Clear	201

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	10.29.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_14C_102912_01 € 1536
1	15:36	ice	8015M - TPH-g	VOAs	3	HCL	L-19C-102912_C1 & 1036

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

402012

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume	Flow Rate	pH	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	(Gal.)	(Gal./Min.)		w(s/cm)	NTUs	mg/L	(F(C)	9/2	uv		
1353	20	VACUUM	8.18	1.654	-	3.27	23.24	1.072	-21.6	Clear	Slight
1400	25	TRUCK	8.11	1.655	-	3.62	24.51	1.076	0.3	Clear	Slight
1411	30		8.18	1.659	-	3.22	22.36	1.078	-20.3	Clear	Stall
1416	35		8.13	1.660	_	3.69	23,45	1.076	-12.8	Clear	Higher
1425	40		8.15	1.652	_	3.71	23.17	1.075	-8.9	Clear	Stold
1436	45		8.17	1.643	_	3.68	23.30	1.073	-15.0	Clear	SING
1450	50		8.16	1.653	_	3.77	23.41	1.074	- 20.0	Clear	Stight
											0
		·									
							_				-
							A				
										-	
				-			-				
					-						

PROJECT NAME:

CENCO

PROJECT NO,:

1003-001-300

DATE: 10/30/12

4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	125.00	(ft.)
DEPTH TO WATER	113.38	(ft.)
HEIGHT OF WATER COLUMN	11.62	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1.89406	(gal)
PURGE VOLUME	x3=5.68	(gal)
PRODUCT THICKNESS //3	38 (DTW) - 110,91 (FPPH) = 2.47	(ft.)

WELL NO.	MW-15A	Hospital
SAMPLED BY:	Frane Sosic	

Well Notes: May contain FPPH

WELL CONDITION:

OK- Stinger will need replacement som

WEATHER CONDITIONS:

Clear + Sunny (280F)

PURGING AND SAMPLING EQUIPMENT:

Y\$I \$56

interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
/	/	/		/	/	/	/	/	/	1	/
/	/	/	* FPPH *		/	/	/	/	/		1
	/			/	1	/	/			1	

Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	* No parameters weasured due to free prod
10.30.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Top-Down Skim of FPPH ~ 30 and 40
1022	ice	8015M - TPH-g	VOAs	3	HCL	11 11 0
						Approx. 45 goldons purged: NO go FAPPL
						11 100 100 10 10 10 10
	Time	Time 10.30.12 ice	Time	Time	Time	Time

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

PROJECT NAME: PROJECT NO.:	CENCO 1003-001-300	
DATE: 10/30/12	4Q2012	
1 1	WELL INFORMATION	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	155.00	(ft.)
DEPTH TO WATER	111.40	(ft.)
HEIGHT OF WATER COLUMN	43.60	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7. 1068	(gal)
PURGE VOLUME	x3=21.3204	(gal)
PRODUCT THICKNESS		(ft.)

VELL CONDITION:	
OK	
WEATHER CONDITIONS:	(282°F)
PURGING AND SAMPLING	G EQUIPMENT:
YSI 556	

Hospital

MW-15B

SAMPLED BY: Frane Sosic

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/1	ORP MV	Color	Odor
1100	5	VACTRUCK	8.22	2.074	/	4.34	22.25	1.350	3/8.5	dive	Strong
1148	10		8.24	2.069	/	3.13	21.35	1.344	186.3	Light gery	Hill
236	15		8.20	2.051	/	3.21	21.59	1.334	153.8	Light grad	HiOD
313	22	L	8.21	2.046		2.80	21.37	1.330	123.6	Voice	Hill
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Stinger is	NOTES:	lowaged:	ementore	Cos of vacion
1	10.30.12	ice	82608 - VOCs + Oxys	VOAs	3	HCL		15 unticeal		(ida)	0. =
Í	1330	ice	8015M - TPH-g	VOAs	3	HCL	Very stor	w purglue	well!		
							14-15	B_1030	12-01	@ 1330	

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

	AME:	CENCO						WELL NO.	MW-15C		Hospital
ROJECT NO	0.:	1003-001-3	300					SAMPLED BY	: Frane Sosi		
ATE: 10	30/12	4Q2012									
			WELL INFORMATION	N				WELL COND	TION:		
OP OF CAS	SING ELEV.					(ft.)		$\mathcal{O}\mathcal{K}$			
WELL DIAM	METER 2"					(inches)					
EPTH OF V	WELL	19	7.00			(ft.)		WEATHER C			
DEPTH TO I	WATER	112	2.02			(ft.)		Clear +	SUMMY (82°F)	
HEIGHT OF	WATER COLU	MN 84	.98			(ft.)			1		
CASING VO	LUME*		Hgt. x 0.163 Gal./Ft. =	13.8517	4	(gal)		PURGING AN	ID SAMPLING	EQUIPMENT:	
PURGE VOL	LUME		x3 = 4/.	55522		(gal)		YS1 556			
						4 50 40					
RODUCT 1	THICKNESS					(ft.)		Interface pro	be (200')		
PRODUCT	THICKNESS						٠ .	Interface pro	obe (200')		
						ATA				1	
PRODUCT 1	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	PURGE D Turbidity		Temperature	TDS	ORP W V	Color	Odor
	Purge Volume		рН 8.23		Turbidity	ATA DO	Temperature	TDS	ORP		Odor
Time:	Purge Volume (Gal.)	(Gal./Min.)			Turbidity	ATA DO	Temperature	TDS	ORP	Color Gray Vite arby	Odor
Time:	Purge Volume (Gal.)	(Gal./Min.)	8.23		Turbidity	ATA DO	Temperature	TDS	ORP	Gray	Odor Hally Hally
Time:	Purge Volume (Gal.)	(Gal./Min.)	8.23		Turbidity	ATA DO	Temperature	TDS	ORP	Gray	Odor Hills Hills Hills
Time:	Purge Volume (Gal.)	(Gal./Min.)	8.23		Turbidity	ATA DO	Temperature (f(C)) 21.21 21.44 22.00	TDS 9/L 1.199 1.204 1.196	0RP MV 84.0 81.6 90.2	Gray Lite artsu Claudy	Odor Hala Viela
Time: 1320 1328 1345	Purge Volume (Gal.)	(Gal./Min.) VAC TRUCK	8.23 8.20 8.09	1,845 1,853 1,849	Turbidity NTUs	ATA DO mg/L 4.08 3.02 2.79	Temperature (f (c)) 21.21 21.44 22.00 Bailer sy	TDS 9/L 1.199 1.204 1.196 NOTES:	ORP MV 84.0 81.6 90.2	Gray Vite ardsu Obuday	Hill Held Hill
Time: 1320 1328 1345	Purge Volume (Gal.)	(Gal./Min.) VAC TRUCK	8.23 8.20 8.09	1,845 1,853 1,849	Turbidity NTUs	ATA DO mg/L 4.08 3.02 2.79 Preserv-	Temperature (f (c)) 21.21 21.44 22.00 Bailer sy	TDS 9/L 1.199 1.204 1.196 NOTES:	ORP MV 84.0 81.6 90.2	Gray Vite ardsu Obuday	Hill Hell Hill
Time: 1320 1328 1345	Purge Volume (Gal.)	(Gal./Min.) VAC TRUCK Packing	8.23 8.20 8.09 Analyses	1, 845 1, 845 1, 849 Container	Turbidity NTUs Quantity	ATA DO mg/L 4.08 3.02 2.19 Preservative	Temperature (F(C)) 21.21 21.44 22.00 Bailer su Had to pu	TDS 9/L 1.199 1.204 1.196 NOTES:	ORP MV 84.0 81.6 90.2	Gray Lite artsu Claudy	Hills Will Will

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

GROUNDWATER SAMPLING LOG

PRO!	FCT	NA	ME	

CENCO

WELL NO.

MW-708

Hospital

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

2012 DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pl-l	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/L	ORP W V	Color	Odor
1356 1404 1429 1442 1457 1526 1543	20 25 30 35 40 45 50	TRUCK	8.13 8.13 8.15 8.16 8.14 8.13	1.647 1.474 1.842 1.856 1.872 1.885 1.888		2.50 2.76 2.59 2.69 2.81 2.60 2.55	22.45 22.40 22.34 22.61 22.57 22.37 22.70	1.197 1.200 1.198 1.202 1.199 1.197 1.195	100.3 99.8 96.5 95.4 98.7 99.0	Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	Mild Mild Mild Mild Mild Mild

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 10-31-17	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	25.00	(ft.)
DEPTH TO WATER	12.10	(ft.)
HEIGHT OF WATER COLUMN	12.9	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2. /027	(gal)
PURGE VOLUME	x3=6.3081	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16A	Walker	
SAMPLED B	Y: Frane Sosic		
WELL NOTE	S:		
WELL COND	ITION:		
GOOD			
WEATHER (CONDITIONS:		_
Hazey -	for /cool AM C	60F)	
Hostly	Sound of Pialet	GREET PH	12 73°F
PURGING A	ND SAMPLING EQUIP	MENT:	
YSI 556			
Interface pr	obe (200')		

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS g/K	ORP UIV	Color	Odor
826	12	VAC TRUCK	8.14	2.528	-	8./3	17.87	1.645	116.1	Clear	Now
900	~4		8.17	2.523	_	4.80	17.91	1.640	1/5.2	Clear	None
941	n 6		8.15	2,525		4.03	18.06	1.637	1/3.1	Clear	Abre

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Very slow purge; well may be going dry
1	10.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Allowed to reclurate for a Mour priox to say
1_	1100	ice	8015M - TPH-g	VOAs	3	HCL	collection.
							LL_16A_103112_01 € 11:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE: 10-31-2012	4Q2012

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER 2"		(inches)				
DEPTH OF WELL	160.00	(ft.)				
DEPTH TO WATER	120.07	(ft.)				
HEIGHT OF WATER COLUMN	39.93	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 6, 50859	(gal)				
PURGE VOLUME	x3= 19.525+4	(gal)				
PRODUCT THICKNESS		(ft.)				

WELLING.	IAIAA-TOD	vvalker
SAMPLED BY	: Frane Sosic	
WELL NOTE:	5:	
WELL COND	ITION:	
GOOD		
WEATHER C	ONDITIONS:	_\
Cool + f	agu AM 1.6	Z°F\
Mostly 3	orted w/ Diglet	wind PH (==
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DAT	TA		Lance Control			
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	g / Z	ORP M V	Color	Odor
1130	5	WAC TRUCK	8.54	2.382	-	3.38	18.60	1.549	-175.2	Cloudy	Strong
1147	10		8.65	2.309		3.26	18.98	1.502	-183.4	Clear	Strong
1202	15		8.64	2.276	-	3.59	19.31	1.488	-187.1	Clear	Strong
1216	20		8.62	2.243	-	3.88	19.51	1.457	-189.5	Clear	Strong
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:			
1	10.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1	12:34	ice	8015M - TPH-g	VOAs	3	HCL	14_16	B_ 1031	112_01	6 123	34

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE	1	OF	2	

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 10.21.70	17 402012	

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER 211		(inches)			
DEPTH OF WELL	196.00	(ft.)			
DEPTH TO WATER	119.84	(ft.)			
HEIGHT OF WATER COLUMN	76.16	(ft.)			
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 12, 41408	(gal)			
PURGE VOLUME	x3=34.24224	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	MW-16C	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GCOD		
WEATHER	CONDITIONS:	
11	sowny w/ Digli	+ 6+00-6-42°
PURGING A	ND SAMPLING EQUIP	MENT:
YS1 556		
Interface pr	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/4	ORP LU	Color	Odor
1229	5	VAC TRUCK	8.59	1.581	1	3.85	21.09	1.027	-213.6	Clear	Stone
235	10		8.51	1.781	/	3.23	20.81	1.158	-201.4	Clear	-11-
241	15	*	8.42	1.841	/	2.79	21.07	1.197	-1987	Cleer	-11-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	10.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	3
1	1446	ice	8015M - TPH-g	VOAs	3	HCL	LL_16C_103112_01 = 14:46
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

10.31.2012

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pΗ	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FCC)	7DS 9/L	ORP MV	Color	Odor
252	20	VACUUM	8.35	1.894	-/	2.60	21.78	1.232	-197.1 -193.2	Clear	Strong S
306	30 35		8.26	1959	1	3.15	21.75	1273	-190.3 -1279	Clear	
320	40		8.26	1,968	/	3.05	21.74	1.277	-186.5	Clear	7
328	45		8.25	1.965	/	2.98	21.76	1.279	-185.2	Clear	Strong SU
			•								
						-					
					-	-	-				

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: ||- ||- 2012 4Q2012

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER 2"		(inches)				
DEPTH OF WELL	110.00	(ft.)				
DEPTH TO WATER	96.07	(ft.)				
HEIGHT OF WATER COLUMN	13.93	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2, 24059	(gal)				
PURGE VOLUME	x3=6.8/77	(gal)				
PRODUCT THICKNESS		(ft.)				

WELL NO.	W-17A	Lakeland
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
NOT GOOD	
WEATHER CONDITIONS:	
High clouds and	homid (a 74°F)
PURGING AND SAMPLING	EQUIPMENT:
YSI 556	
Interface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	S/L	ORP	Color	Odor
806	3	VACTRUCK	830	2.188	/	6.57	21.21	1.419	95.9	Gray	Slight
917	6		8.27	2.186	/	4.23	21.24	1.425	88.8	Lite gray	Slaglo
1000	8		8.28	2.196	/	3.09	21.28	1.428	78.Z	Cloude	SAHO

Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Very slow purge
1	11-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
	10:27	ice	8015M - TPH-g	VOAs	3	HCL	LL_17A_110112_01 @ 1027
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

CENCO

PROJECT NAME:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NO	0.:	1003-001	-300				SAMPLED BY: Frane Sosic					
DATE: -	1-2012	4Q2012										
			WELL INFORMATI	ION				WELL CONDITION	ON:			
TOP OF CAS	ING ELEV.					(ft.)		NOT GO	OD	•		
WELL DIAM	ETER	2"				(inches)						-
DEPTH OF V	VELL		170.00			(ft.)	WEATHER CONDITIONS:					
DEPTH TO V	VATER		109.06			(ft.)	High clouds + humid w/ light breeze					
HEIGHT OF	WATER COLUI	MN	60.94			(ft.)	(a 47619F)					
CASING VO	LUME*		Hgt. x 0.163 Gal./Ft. =	1.93322		(gal)		PURGING AND	SAMPLING EQU	IPMENT:		-
PURGE VOL	UME		x3= 29	1.79966		(gal)		YSI 556				
PRODUCT T	HICKNESS					(ft.)	Interface probe (200')					
1036	5	VAC TRUCK	8.48	1,513	-	3.46	22.00	0.988	1-91.9	Olive gay	Wild	144
1110	.10		8.50	1.500	PURGE D	ATA3. 24	21.49	0.944	-113.6	Olive	-11-	7
Time:	Purge Volume	Flow Rate	рН	Sp.Cond.	Turbidity	DO	Temperature	TDS 9//	ORP	Color	Odor	
11/19	(Gal.)	(Gal./Min.)	0//0	[4.5/cm]	NTUs	mg/L	(F(C))		111/	7.7		-
1000	20		0.4%	1,400	+=	2.74	21.70	0.966	-107.5	Lite gray	-11-	-
1000	20		846	1/187	-	2.00	21.80	0.767	E 114.9	March	-//-	-
1250	30		8.46	11190	-	2.35	0107	0.700	- 412	Ola D	011	d
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	21.4	NOTES:	11.2	Cloudy	CH4+	7
No.	Time					ative	Verys	ow purge				
1	11-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	- 0	10				
1	1316	ice	8015M - TPH-g	VOAs	3	HCL	11/1	7B 111	0112_0	1013	2:16	
	-						-			- 1		1
		-		-	-		-					
ADDITION	L INFORMATI	ON.			-						_	

2" wel) = 0.163 Gal./Foot

W-17B

Lakeland

WELL NO.

PAGE 1 OF Z

GROUNDWATER SAMPLING LOG

PROJECT NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: //- /- 20/2 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2		(inches)
DEPTH OF WELL	200.00	(ft.)
DEPTH TO WATER	109.12	(ft.)
HEIGHT OF WATER COLUMN	90.88	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 4 8 3 4	(gal)
PURGE VOLUME	x3=44,44	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. W-17C Lakeland
SAMPLED BY: Frane Sosic

WELL CONDITION:

NOT GOOD

WEATHER CONDITIONS:

Partially cloudy w/a light bross (2747)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/L	ORP	Color	Odor
1300	S	VAC TRUCK	8.39	1,479	/	3.34	21.20	0.962	-118.6	Gray	Hely
1325	10		8.45	1.400	/	3.14	21.30	0.921	-113.1	Grand	Help
1342	15	4	8.49	1.311	/	2.77	21.26	0.900	-107.4	Litegay	HiO

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Very slow pumping well
1	11-1-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1
1	1540	ice	8015M - TPH-g	VOAs	3	HCL	LL_17C_110112_01 @ 15:40

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	g/L	ORP	Color	Odor
1409 1428 1439 1446 1510 1537	20 25 30 35 40 45	VACOUM TRUCK	8.53 8.55 8.54 8.42 8.49 8.48	1.243 1.248 1.241 1.349 1.260 1.265		2.80 2.74 2.43 3.53 3.11 2.87	21.25 21.24 21.20 21.04 21.25 21.43	0.869 0.911 0.803 0.896 0.819 0.822	- 137.6 - 159.0 - 156.4 - 131.3 - 155.6 - 151.4	Clear Clear Clear Clear Clear	Hild Hild Hild Hild Mall Mild Ch

ROJECT NA	AME:	CENCO						WELL NO.	EW-1		Walker
ROJECT NO	0.:	1003-001	-300					SAMPLED BY	: Frane Sosic		
ATE: //-	-13-12	4Q2012									
								WELL NOTES	: Contains	FPPH + VO	C Vapors
			WELL INFORMATIO	N				WELL COND	ITION:		
OP OF CAS	SING ELEV.					(ft.)		NOT GO	OD!		
VELL DIAN	IETER 4	(1)				(inches)					
EPTH OF \	WELL	N 13.	00			(ft.)		WEATHER C	ONDITIONS:		
EPTH TO V	WATER	105.	.52			(ft.)	- (Stor +	Scaus la	82°F	
EIGHT OF	WATER COLU	MN 7.C	18 000			(ft.)					
ASING VO	LUME*		Hgt. x 0.163 Gal./Ft. =	4.9368		(gal)		PURGING AI	ND SAMPLING	EQUIPMENT:	
URGE VOL	UME		x3=/4.	8104		(gal)		YSI 556			
RODUCT	THICKNESS /	06,401	OTFP) - 105.5	2(DIW)	= 0.88	S (ft.)		Interface pr	obe (200')		
							•				
			· · · · · · · · · · · · · · · · · · ·	P	URGE DA	TA					
Time:	Purge Volume	Flow Rate	рН	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	(Gal.)	(Gal./Min.)		(s/cm)	NTUs	mg/L	(F/C)	/	1		-
	/	/		/	/	1	1		1	/	1
	/	/	* FPPH*	/	/	/	/	/	/	/	/
-		/		/	/	1	1	/			
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-		NOTES:		1 6	
No.	Time					ative	* No fi		weters colle	ected *	
1	11.13.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Too	Dan F	PPH skine		
1	1200	ice	8015M - TPH-g	VOAs	3	HCL	1000	1110	M SHA	61	Ell L
							lotal à	1-10 ap	ADKA PELUI	spear Them	200-
							7 92	. of Grov	PPH skium Nova rewr M FPPH brown eur	1.001	1-60
	1						13 9	of kight	brown emi	lattied t	120/11
DDITION	AL INFORMAT	ION:				4		of GW			
OC = Top	of well casing								3/2-01	0 12:0	0
	lume = r2h(ft):	x 7 48 gal/ft	3		(A" well to	66 Gal./Foot			163 Gal./Foot	E 112 C	

PAGE	1	OF	2

PROJECT NAME:	CENCO					
PROJECT NO.:	1003-001-300					
DATE: 11-13-2012	4Q2012					

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	98.51	(ft.)
HEIGHT OF WATER COLUMN		(ft.)
CASING VOLUME*	Hgt. x Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-701	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITION	ON:	
Very goo	ab	
WEATHER CON	DITIONS:	1
Clear +	Sunny (~82")	=)
PURGING AND	SAMPLING EQUIPMENT	:
YSI 556		
Interface probe	200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	g/L	ORP	Color	Odor
	5		8.47	1.931	/	5.35	24.13	1.255	206,9	Gray	Slight
	10		8.02	1.933	/	4.17	24.10	1.258	187.4	Gray	Stal
	15		7.93	1.930	/	3.60	23.90	1.255	178.6	Lite day	SUL

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11-13-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	7
1	1427	ice	8015M - TPH-g	VOAs	3	HCL	LL_701_111312_01 @ 14:27

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

(402012)

Tìme:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pi·l	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP WV	Color	Odor
	20	VACUUM	7.89	1.926		3.00	23.79	1.252	167.3	Vite gray	Xiald East
1356 1413	30 35 40		7.87 7.87 7.88	1,923 1,922 1,922		3.10 3.03 3.00	23.58 23.47 23.44	1.249	160.1 159.4 161.0	Cloudy Cloudy Cheer	Stight Stight None
170.5	70			1,100		5,00		1.011	101,0	C Takes	7000
			•								

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 11-13-12 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	98.26	(ft.)
HEIGHT OF WATER COLUMN	31.74	(ft.)
CASING VOLUME*	Hgt. x0.66Gal./Ft. = 20.9484	(gal)
PURGE VOLUME	x3=62.8452	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	19199-702	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:	Strong H ₂ S / CH ₄	/ VOC vapors
WELL CONDITION	ON:	
OK		
WEATHER CON		F
PURGING AND	SAMPLING EQUIPMEN	T:
YSI 556		
Interface probe	(200')	

MW-702

WELL NO

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	gles	ORP	Color	Odor
1442	5		7.92	1.939	/	5.27	24.60	1.260	137.3	Charly	Stron
444	10		7.86	2.001	/	2.44	25.71	1.300	51.6	Cloudy	Street
450	15		7.85	2.001	1/	2.56	25.19	1.301	-42.5	Charles	Stron

Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling
11.13.12	ice	82608 - VOCs + Oxys	VOAs	3	HCL	
1606	ice	8015M - TPH-g	VOAs	3	HCL	11 700 111010 01 0 11.00
						LL_702_111312_01 @ 16:06
	11.13.12	Time 11-13-12 ice 1606 ice	//- /3 - /2 ice 8260B - VOCs + Oxys	//- /3 - /2 ice 82608 - VOCs + Oxys VOAs	//- /3 - /2 ice 8260B - VOCs + Oxys VOAs 3	//- /3 - /2 ice 8260B - VOCs + Oxys VOAs 3 HCL

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

11-13-12 (402012)

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	PH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F C)	O/L	ORP WV	Color	Odor
1457		VACOUM	7.81	2.007	141 05	2.75	25.42	1.304	1-96.1	Clonder	Strong
1455	25	TRUCK	7.72	2.006	_	2.58	25.20	1.305	-114.0	Char	1
1458	30		7.78	2.003	_	3.49	24.72	1.301	-110.5	Clear	
1501	35		7.74	2.002		2.90	24.79	1.300	-115.4	Clear	
1505	40		7.78	2.000		2.92	24.83	1.297	-120.3	Cloude	
1512	45		7.77	2.001	-	2.86	24.81	1.297	-118.7	Cloudy	
1522	50		7.76	1.999		2.80	24.84	1.295	-116.5	Closer	
535	55		7.75	1.998	-	2.79	24.87	1.298	-115.7	Clear	
1550	60		7.74	1.996	_	2.77	24.85	1.296	-116.3	Claser	Strong
				,							

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 4-4-2 4Q2012

L	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	99.96	(ft.)
HEIGHT OF WATER COLUMN	30.04	(ft.)
CASING VOLUME*	Hgt. x0.66Gal./Ft. = 19.8264	(gal)
PURGE VOLUME	x3=59.4492	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-703	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:	New 4" well	
WELL CONDITION	ON:	
GOOD		
WEATHER CON	DITIONS:	
118	DITIONS:	
118	10-0-	
Oleger + 5	10-0-	
Oleger + 5	50 my (* 80°F)	

				• /	PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	3/L	ORP ULV	Color	Odor
*	5				_						
*	10		* Equipment Ha	Auction *	-						
-X:	15		1		_						

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	* USI 556 is Down - no persureles collected
1	11.14.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	60 galloux revoled from well MW-70
1	924	ice	8015M - TPH-g	VOAs	3	HCL	11 703 11412 01 6 9:24

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO			
PROJECT NO.:	1003-001-300			
DATE: 11-14-17	4Q2012			

V	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL 130. Q	0	(ft.)
DEPTH TO WATER	9	(ft.)
HEIGHT OF WATER COLUMN 28.2	21	(ft.)
CASING VOLUME* Hgt.	x0.66Gal./Ft. = 18.6186	(gal)
PURGE VOLUME	x3=55.8558	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	WW-704	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITION	ON:	
GOOD		
Clear Su	pund (2 80 E)	
PURGING AND	SAMPLING EQUIPMENT:	
YSI 556		
Interface probe	e (200')	

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/2	ORP ULV	Color	Odor
*	5										
*	10		* EQUIPMENT H	KFUNCTION	J*						
*	15										

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	* USI 556 is about - no parameters callete
1	11-14-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 704 111417 01 @ 1232
1	1333	ice	8015M - TPH-g	VOAs	3	HCL	- LL_704_111412_01 @ 1333
2	11.14.12	ice	\$250B	-11-	-11-	-11-	Jan Wills as a kilos
2	1400	ice	BUSH .	-1/-	-11-	-H-	11-704_111412 02 @ 1400
2	1400	ice	305 H	-1/-	-11-	-H-	12 - 107 111412 02 6 170

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

ot 2" well = 0.163 Gal./Foot

CENCO PROJECT NAME: 1003-001-300 PROJECT NO .: DATE: //-4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	102.94	(ft.)
HEIGHT OF WATER COLUMN	24.06	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 14.8596	(gal)
PURGE VOLUME	x3=53.5788	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-705	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:	Strong H2S / LE	L / VOC vapors
WELL CONDITION	ON:	
OK.		
WEATHER CON	DITIONS:	1
Clear +	Suny (80°1	=)
PURGING AND	SAMPLING EQUIPMEN	NT:
YSI 556		
Interface probi	2 (200')	

MW-705

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odo
*	5										
*	10		* EQUIPHENT W	ALFUNCTION	J*						
*	15										

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling
1	11.14.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 705 111412 OI @ 4:20
1	16:20	ice	8015M - TPH-g	VOAs	3	HCL	LL 1002111 10001 C DE
2	11-14-12						11 705_111412-02@16:35
2	1635						LL_ 103_111412_02 @ 10-55

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 1/-15-12	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	99.47	(ft.)
HEIGHT OF WATER COLUMN	30.53	(ft.)
CASING VOLUME*	Hgt. x0.66Gal./Ft. = 20.1498	(gal)
PURGE VOLUME	x3=60,4494	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-706	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITION	ON:	
OK	_	
WEATHER CON	DITIONS:	
Charles (-69°F)	
U		
PURGING AND	SAMPLING EQUIPME	NT:
YSI 556		
Interface probe	e (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS JE	ORP Law V	Color	Odor
1400	5		8.11	12.001	/	2.94	21.59	1.302	265.7	Dute gray	Strong
	10		8.12	2.003	/	2.87	21.40	1.300	244.2	Vive gray	Strang
	K		810	2,000	/	2.79	21.27	1.301	200,9	Gran	Strond

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-line broke: purge even slower
1	11-15-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	-LL 706_111512_01 @ 13:34
1	1334	ice	8015M - TPH-g	VOAs	3	HCL	LL 100-111312 - 01
2	11-15-12	ice	8260B	-11-	-11-	-11-	-LL_706_111512_02 @ 14:16
2	1416	ide	80/SH	-11-	-11-	-11-	- 100_111 Jsc. Oc. 6

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

	* Air-line	repai
-		

(4" well = 0.66 Gal./Foot

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: 11.15-2012 (4020/2)

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рМ	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP MV	Color	Odor
	20 25 30 35	TRUCK	8,05 8,04 8.06 8.04	1.997		3.36 3.32 3.27 3.30	20.76 21.07 21.29 21.33	1.295 1.292 1.290 1.293	173.0 113.1 -40.3 -41.7	Olive green Olive green Gray Light green	
	40 45 50		8.09 8.06 8.05			3.34 3.29 3.37	21.28 21.25 21.20	1.295 1.292 1.291	+ 53.5 - 44.1 - 38.5	Cloudy Cloudy	
	55		8.03	1.988		3.33	21.13	1.289	-30,2 -26,4	Clordy	Strong

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-15-12	4Q2012	

WELL INFO	RMATION
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4	(inches)
DEPTH OF WELL /30.00	(ft.)
DEPTH TO WATER 97,49	(ft.)
HEIGHT OF WATER COLUMN 32, 51	• • (ft.)
CASING VOLUME* Hgt. x 0.66 Gal.	/Ft. = 21,4566 (gal)
PURGE VOLUME	x3 = 64.3698 (gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	MW-707	Coaster
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION;	
GOOT)	
WEATHER C	ONDITIONS:	
Cloude	w/ light win	D(167°F)
U	1 0	
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface or	ohe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	РH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TOS 9/C	ORP un L	Color	Odor
	5		7.88	1.759	/	6.04	21.60	1.145	-49.0	Clouder	Mas
	10		7.83	1.751	/	3.96	22,23	1.139	-76.5	Charles	Milk
	15		7.85	1.756	/	4.21	22.09	1.142	-88.6	Class	Millell

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11.15.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 700 111512 21 21100
1	16:00	ice	8015M - TPH-g	VOAs	3	HCL	LL_707_111512_01 @ 1600
					-	_	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

Purge Volume	Flow Rate	рВ	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
(Gal.)	(Gal./Min.)		M (3/cm)	NTUs	mg/L	(F(C)	9/2	l wV		
20	'VACOUM	7.86	1,763	_	4.09	22.05	1.141	-90.1	Clear	Help
25	TRUCK	7.82	1.470	_	3.80	22.00	1.139	-100.6	Charles	Hill
30		7.84	1.444	_	3.72	22.10	1.142	-95.4	Clear	Mild
35		7.80	1.785	_	3.57	22.13	1.144	-96.0	Clear	Hele
40		7.77	1.792		3.26	22.20	1.141	-93.2	Cloudy	MiOD.
45		7.75	1.797	_	3.11	22.16	1.140	-91.3	Cloudy	High)
50		7.72	1.801		3.00	22.19	1.143	- 90.5	Clear	Hild.
22		7.70	1.798		2.47	22.23	1.146	-90.1	Clear	Hill
60		7.66	1.800	-	2.22	22.31	1.145	-89.3	Clear	lell.
65		7.64	1.802	_	2.13	22.35	1.145	- 88.8	Clear	Hill
										Ì
	(Gal.) 20 25 30 35 40 45 50	(Gal.) (Gal./Min.) 20 'VACUUM 25 TRUCK 30 35 40 45 50 50	(Gal.) (Gal./Min.) 20 'VACWH 7.86 25 TRUCK 7.82 30 7.84 35 7.80 40 7.44 45 7.45 50 7.72 50 7.66	(Gal.) (Gal./Min.) (Gal./Min.) (Gal.) (Gal.) (Gal./Min.) (Gal./Min	(Gal.) (Gal./Min.) M. G/cm) NTUS 20 VACUUM 7.86 1.763 — 25 TRUCK 7.82 1.770 — 30 7.84 1.771 — 35 7.80 1.785 — 40 7.71 1.792 — 45 7.72 1.801 — 50 7.72 1.801 — 50 7.66 1.800 —	(Gal.) (Gal./Min.) M. G/cm) NTUs mg/L 20 VACUUM 7.86 1.763 — 4.09 25 TRUCK 7.82 1.740 — 3.80 30 7.84 1.741 — 3.72 35 7.80 1.785 — 3.57 40 7.44 1.792 — 3.26 45 7.75 1.797 — 3.11 50 7.72 1.801 — 3.00 55 7.70 1.798 — 2.47 60 7.66 1.800 — 2.22	(Gal.) (Gal./Min.) M. G/cm) NTUs mg/L (FQ) 20 VACUUH 7.86 1.763 — 4.09 22.05 25 TRUCK 7.82 1.770 — 3.80 22.00 30 1.84 1.771 — 3.72 22.10 35 7.80 1.785 — 3.57 22.13 40 7.74 1.792 — 3.26 22.20 45 7.75 1.797 — 3.11 22.16 50 7.72 1.801 — 3.00 22.19 55 7.70 1.798 — 2.47 22.23 60 7.66 1.800 — 2.22 22.31	(Gal.) (Gal./Min.)	20 VACUUH 7.86 1.763 - 4.09 22.05 1.141 -90.1 25 TRUCK 7.82 1.740 - 3.80 22.00 1.139 -100.6 30 7.84 1.744 - 3.72 22.10 1.142 -95.4 35 7.80 1.785 - 3.57 22.13 1.144 -96.0 40 7.44 1.492 - 3.26 22.20 1.141 -93.2 45 7.45 1.494 - 3.11 22.16 1.140 -91.3 50 7.72 1.801 - 3.00 22.19 1.143 -90.5 55 7.70 1.798 - 2.47 22.23 1.146 -90.1 60 7.66 1.800 - 2.22 22.31 1.145 -89.3	20 VMWH 7.86 1.763 - 4.09 22.05 1.141 -90.1 Clear 25 TRUCK 7.82 1.770 - 3.80 22.00 1.139 -100.6 Charly 30 7.84 1.777 - 3.72 22.10 1.142 -95.4 Clear 35 7.80 1.785 - 3.57 22.13 1.144 -96.0 Clear 40 7.47 1.492 - 3.26 22.20 1.141 -93.2 Cloudy 45 7.75 1.797 - 3.11 22.16 1.140 -91.3 Cloudy 50 7.72 1.801 - 3.00 22.19 1.143 - 90.5 Clear 50 7.72 1.801 - 2.47 22.23 1.146 -90.1 Clear 60 7.66 1.800 - 2.22 22.31 1.145 -89.3 Clear

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: //-/6-/2 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	96.69	(ft.)
HEIGHT OF WATER COLUMN	33.3/	(ft.)
CASING VOLUME*	Hgt. x0,66Gal./Ft. = 21.9846	(gal)
PURGE VOLUME	x3=65.9538	(gal)
PRODUCT THICKNESS 96	.88 (DTW) - 96.69 (DT FPPH) = 0.19	(ft.)

MW-708	Hospital
Frane Sosic	
May cont	ain FPPH
ION:	
NOITIONS:	twind (a 70
D SAMPLING EQUIP	MENT:
be (200')	-
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	May controns: NDITIONS: Clards/Cinto

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/2	ORP	Color	Odor
715	5		7.93	2.014	/	4.26	24,65	1.33/	-1/8.6	Gray	Storm
735	10		7.89	2.015	/	3.82	24.24	1.309	-116.4	Grede	Strong
748	15		7.82	2.010	1	3.17	24.16	1.302	-120.9	Olive	Stran

No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11.16.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	9:30	ice	8015M - TPH-g	VOAs	3	HCL	LL_708_111612_01 @ 9:30
						-	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

11-16-2012 (402012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рH	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP	Color	Odor
803 820 833	20 25 30	VACUUM TRUCK	7.82 7.83 7.86	2.001 2.005 2.006		3.03 2.80 2.67	24.20 24.14 24.22	1.302 1.300 1.305		Olive Vellaish Vellavid	Strong
846 900 912	46 50 60		7.87 7.88 7.88 7.90	2.009 2.008 2.006 2.007		2.64 2.61 2.59 2.50	24.15 24.18 24.22 24.25	1.308 1.310 1.313 1.311	-131.2 -129.7 -130.4 -133.6	Cite gray	Strong
925	70		·	2.007		2.30	4.6	1. 3/1	-155.6	Cloudy	Strong

PAGE 1 OF 2

YSI 556

Interface probe (200')

PROJEC	T NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 11-16-2012

6.20/2 402012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	107.15	(ft.)
HEIGHT OF WATER COLUMN	20.85	(ft.)
CASING VOLUME*	Hgt. x0-66-Gal./Ft. = 13.761	(gal)
PURGE VOLUME	x3=41.283	(gal)
PRODUCT THICKNESS		(ft.)

lild in 67
U

	PURGE DATA												
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рн	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	g/L	ORP	Color	Odor		
	5		8.04	2.165	/	6.87	23.13	1.212	-77.4	Lite gray	Hill		
	10		8.02	2.177	/	4.32	23.64	1.214	-69.6	Lite girly	Hill		
	15		8,00	2.189	/	3.17	22.87	1.213	-65.0	Cite aral	MOL		

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11.16.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1148	ice	8015M - TPH-g	VOAs	3	HCL	LL_709_111612_01 @ 11:48
_						_	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

11.16.2012 (402012)

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	Hq	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP	Color	Odor
	25 30 35	VACUUM TRUCK	7.89 7.84 7.79 7.75	2.200 2.201 2.210 2.211		3.01 2.69 2.60 2.50	22.66 22.65 22.59 22.60	1.123 1.126 1.124 1.122	-69.7 -70,4 -58.3 -55.9	Cloudy Cloudy Cloudy Cloudy	Hills Hills Hills
	46		7.43	2.213		2.55	12.58	1.125	-5.7	Cloudy!	Mild

Page 1 of 2

PROJECT NAME:			CENCO	
PROJEC	NO.:		1003-001-300	
DATE:	11.16-2	2012	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	95.32	(ft.)
HEIGHT OF WATER COLUMN	34.68	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 22.888	(gal)
PURGE VOLUME	x3=68,6664	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-710	Hospital
SAMPLED BY	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
WEATHER C	ONDITIONS:	
	ND SAMPLING EQUIP	PMENT:
YS1 556		
Interface pr	obe (200')	

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	7DS 9/L	ORP	Cofor	Odor
	5		8.03	1830	/	5.55	23.21	1.321	77.4	Lite gray	Hill
	10		8.00	1.827	/	4.20	23.20	1.323	69.2	Cite Year	Mich
	15		499	1.807	/	4.07	23.17	1.320	58.7	Norta	11:01

Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11-16-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	13:40	ice	8015M - TPH-g	VOAs	3	HCL	LL_710_111612_01 @ 13:41
			-				200 100 100 100 100 100 100 100 100 100

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r3h(ft) x 7.48 gal/ft.3

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

11-16-2012 (402012) DATE:

WELL NO. SAMPLED BY: Frane Sosic

Purge Volume Sp.Cond. DO Temperature Time: Flow Rate pH Turbidity TDS ORP Color Odor us (s/cm) (F(C) (Gal.) (Gal./Min.) NTUS mg/L VACUUM TRUCK lowely

PAGE 1 OF 2

PROJECT NAME:	CENCO
PROJECT NO .	1003-001-300

DATE: 11-16-2012 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	102.17	(ft.)
HEIGHT OF WATER COLUMN	27.83	(ft.)
CASING VOLUME*	Hgt. x0,66 Gal./Ft. = 18.3678	(gal)
PURGE VOLUME	x3=55.1034	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-711	Hospital
SAMPLED B	r: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
leng	laced	
V		
WEATHER C	ONDITIONS:	
Hostly !	Duny (2720F)
0		
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	3/2	ORP	Color	Odor
	5		7.90	2.022	/	4.39	23.40	1.121	-115.1	Dok grow	Stow
	10		7.89	2.021	/	3.92	23.26	1.126	-96.3	Olive grate	Strong
	15		7.88	2.020	/	3.50	23.21	1.125	-88.4	Gray	Tron

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
	11.16.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
	15:27	ice	8015M - TPH-g	VOAs	3	HCL	4.711_11612_01 @ 15:27
							W_111_111612_01 & 10.27
_	-			-			

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

402012

WELL NO.

Time:	Purge Volume	Flow Rate	Ыd	Sp.Cond.	Turbidity	DO	Temperature	g/ZDS	ORP	Color	Odor
	(Gal.)	(Gal./Min.)	7.86	(s/cm)	NTUs	3.07	23.14	1.123	1-76.4	Olive area	Strang
	25	TRUCK	7.84	2.019		3.05	23.13	1.120	-78.7	Gray	Strana
	30		7.82	2.018	_	3.00	23.20	1.119	+75.0	Olive	Strong
	35		7.83	2.00	_	2.90	23.17	1.118		Cite gracy	Strong
	40		7.81	2.015	_	2.74	23.13	1.117	+62.2	Gran	Strong
	45		7.79	2.014		2.40	23.11	1.115	+60.1	Greed	Strong
	50		7.78	2.016	_	2.69	23.10	1.114	+60.0	Olive one	Strang
	55		7.77	2015		2.67	23.09	1.115	-59.7	Olive	Stone
	60		7.77	2.016	_	2.66	23.07	1.113	-59.8	Olive	Stroke
				-							
						-					
											-
						-	-				
			-								
					-	-				-	-
	-				-		-				

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-19-12	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	99.19	(ft.)
HEIGHT OF WATER COLUMN	30.81	(ft.)
CASING VOLUME*	Hgt. x - 66 Gal./Ft. = 20.3346	(gal)
PURGE VOLUME	x3=61.0038	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-712	Hospital
SAMPLED BY	: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very 9	cod	
WEATHER C	ONDITIONS:	· ¥
Hostly	SUMMY (2 729	+)
PURGING A	ND SAMPLING EQUIP	PMENT:
YSI 556		
Interface pr	obe (200')	

	PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TOS	ORP 44	Color	Odor	
645	5	VAC TIRUCK	7.90	1.711	/	9.38	23.46	1.112	1/8.9	life gran	Stron	
705	10	1	7.86	1.745	/	4.45	23.50	1.133	9.6	Cloudy	Strang	
423	15	1	7.84	1.443	/	3.61	23.44	1.134	-16,7	Clouda	Story	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
/	11.19.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11-11101
1	851	ice	8015M - TPH-g	VOAs	3	HCL	LL_712_111912_01 @ 8:37

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

(402012) 11-19-2012 DATE:

WELL NO.

Time;	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рΗ	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	9/L	ORP WV	Color	Odor
	20	VACUUM	7.86	1745	_	3.15	23.39	1.135	-55.4	Cloudy	Stron
	25	TRUCK	7.83	1.742		3.21	23.48	1.133	-74.7	Cloudy	Strong
	30		7.81	1.742	_	2.70	23,50	1.132	-64.2	Cloude	Strong
	35		7.80	1.740	_	2.46	23.46	1.131	+69.4	Cloudy	Strone
	40		7.81	1.745	_	2.41	23.49	1.130	+38.3	Cloudy	Strang
	45		7.82	1.739	_	2.37	23.50	1.133	+50,1	Cloudy	Strol
	50		7.83	1.741	_	2.26	23.50	1.132	+50.0	Corda	Stron
										1	

PAGE	1	OF	2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 11-19-12	4Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130,00	(ft.)
DEPTH TO WATER	104.81	(ft.)
HEIGHT OF WATER COLUMN	25.19	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 16.6254	(gal)
PURGE VOLUME	x3=49.8762	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-713	Hospital
SAMPLED BY	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GOOD		
11 11	ONDITIONS:	-)
PURGING A	ND SAMPLING EQUIP	MENT:
YS1 556		
Interface pr	1 1	

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TOS 9/2	ORP	Color	Odor
	5	VAC TRUCK	7.92	1.942	/	4.66	23.77	1.258	24.5	Grey	Hill
	10	1	7.91	1.945	/	3.41	23,73	1.272	-3.4	Lite drew	Help
	15	V	7.80	2.026	/	3.14	23,70	1.3/8	-769	Lit green	Hill

01 @ 11:00
01 6 11.00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

11-19-2012 (402012)

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP UN V	Color	Odor
	20	VACCOM	7.81	2.057	_	2.72	23.74	1.337	+102.7	Cloudy	Hill
	25	TRUCK	7.76	2.079	_	2.20	23.69	1.351	+111.9	Cloudy	Hill
	30		7.77	2.095	_	2.44	23.71	1.360	+126.3	Clear	Stight
	35		7.79	2.100	_	2.56	23.75	1.362	-128.9	Clear	Help
	46		7.82	2.105		2.69	23.70	1.365	+135.4	Cloudy	Nida
	45		7.80	2.106	-	2.70	23.73	1.366	+137.8	Clear	Hill
	50		7.79	2.113	-	2.72	23.75	1.363	+139.5	Clear	Hill
							-		-		
	-										
						-					
			-	1							
			-						-		
_	1						-		_		
-					1				-		-
						-	~				
							-				
									-		
-				-							
-											
-									-		
		1								-	

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: | - | 9- | 2 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	105.70	(ft.)
HEIGHT OF WATER COLUMN	24.30	(ft.)
CASING VOLUME*	Hgt. x . 66 Gal./Ft. = 16.038	(gal)
PURGE VOLUME	x3=48.114	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-714	Hospita
SAMPLED BY	: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very go	xd	
WEATHER C	ONDITIONS:)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS 9/2	ORP W V	Color	Odor
	5	VAC TRUCK	7.70	2.368	/	8.34	23.11	1.537	-49.2	Cloudy	Hill
	10		7.82	2,509	/	4.20	23.07	1.629	-67.5	Nordy	Help
	15	1	7.81	2,506	/	3.65	23.08	1.630	-810	Mondy	Help

	ative	Quantity	Container	Analyses	Packing	Sample Time	Sample No.
	HCL	3	VOAs	8260B - VOCs + Oxys	ice	11-19-12	1
	HCL	3	VOAs	8015M - TPH-g	ice	12:47	1
14_111912_01 6 12:47							
7		3				12	<i>i</i>

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = c2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: 11-19-2012 (402012)

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	9/L	ULV ORP	Color	Odor
	20	VACUUM	7.85	2.506		3.39	23.10	1.628	+77.7	Cloudy	Mill
	25	TRUCK	7.79	2.507	_	2.96	23.05	1.629	-64.8	Clary	Hill
	30		7.82	2.505	_	3.25	22.82	1.628	-75.Z	Clear	Mile
	35		7.85	2.504	_	3.60	22.84	1.627	- 88.5	Clear	Mill
	40		7.84	2.502		3.11	22.79	1.626	-93.7	Clear	Mich
	45		7.83	2,500	_	2.96	22.76	1.630	-96.4	Cloudy	Mile
	50		7.81	2.500	_	3.04	22.75	1.631	-98.7	Cloudy	Hill
			-)	
											,

PAGE 1 OF 2

GROUNDWATER SAMPLING LOG

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: //- /9- /2 4Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	97.65	(ft.)
HEIGHT OF WATER COLUMN	32.35	(ft.)
CASING VOLUME*	Hgt. x . 66 Gal./Ft. = 21.351	(gal)
PURGE VOLUME	x3=64.053	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-715 Hospital

SAMPLED BY: Frane Sosic

Well Notes:

WELL CONDITION:

WEATHER CONDITIONS:

Hostly sway (** 4504*)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Color	Odor
	5		7.81	2.009	/	6.82	22.58	1.302	-68,2	Cloudy	Slorp
	10		7.80	1.408	/	3.46	22.80	1.1/2	-96.5	Cloud	-11-1
	15		7.83	1.546	/	3.50	22.95	1.005	-101.0	Coul	-11-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	11-19-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1526	ice	8015M - TPH-g	VOAs	3	HCL	-11-715_111912_01 @ 15:26

ADDITICINAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

19-2012 402012

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pk	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP ULV	Color	Odor
		VACUUM	7.84	1.515		3.10	23.01	0.986	-94.7	Cheer	Very sou
	25	TRUCK	7.84	1,496		3.23	22.94	0.972	+96.3	Clear	Sodr
	30		7.82	1.507		3.44	22.88	0.944	+113.6	Clar	SOUT
	35		7.83	1510	_	3.49	22.80	0.988	-113.1 +123.6	Clear	Sour
	40		7.84	1510		3.57	22.66	0.16	-123.6	Clear	Sour
	50		7.85	1.510		3.62	22.53	1.002	+134.5	Clear	Sour
	* Purge cu	t slightly	Lost Due	to busy pa	Elvy OFFO	cosibilite	to well s				
		0 2									

02 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 10/29/12 15:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/02/12 16:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_14A_102912_01	T121960-01	Water	10/26/12 10:37	10/29/12 15:45
LL_14B_102912_01	T121960-02	Water	10/26/12 13:20	10/29/12 15:45
LL_14C_102912_01	T121960-03	Water	10/26/12 15:36	10/29/12 15:45
LL_TB_102912	T121960-04	Water	10/26/12 00:00	10/29/12 15:45

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/02/12 16:41

LL_14A_102912_01 T121960-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	3800	50	ug/l	1	2103017	10/30/12	10/31/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		79.8 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	3.0	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.2	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
eis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14A_102912_01 T121960-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	, .	Sunstai La	andi atdi	ies, iiic.				
Volatile Organic Compounds by	EPA Method 8260E	3						
1,2-Dichloropropane	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	7.0	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	51	1.0	"	"	"	"	"	"
n-Propylbenzene	22	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	42	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	120	1.0	"	"	"	"	"	"
Vinyl chloride	4.4	1.0	"	"	"	"	"	"
Benzene	4500	50	"	100	"	"	"	"
Гoluene	5.1	0.50	"	1	"	"	"	"
Ethylbenzene	150	0.50	"	"	"	"	"	"
m,p-Xylene	240	1.0	"	"	"	"	"	"
o-Xylene	110	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14A_102912_01 T121960-01 (Water)

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	1.5	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		85.2 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		109 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

52

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/02/12 16:41

LL_14B_102912_01 T121960-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)

32	50	ug/1		2103017	10/30/12	10/31/12	LI A 6015C	
	54.3 %	65-1	35	"	"	"	"	S-03
A Method 8260	В							
ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	0.50	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	0.50	"	"	"	"	"	"	
1.6	1.0	"	"	"	"	"	"	
ND	0.50	"	"	"	"	"	"	
31	1.0	"	"	"	"	"	"	
7.4	1.0	"	"	"	"	"	"	
1.6	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
	ND N	S4.3 % PA Method 8260B	S4.3 % 65-10	S4.3 % 65-135 S4.3 % S	S4.3 % 65-135	S4.3 % 65-135 " " "	S4.3 % 65-135	S4.3 % 65-135

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

10/30/12

2103017

10/31/12

EPA 8015C

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14B_102912_01 T121960-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	20	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	4.3	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	82	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	1.8	1.0	"	"	"	"	"	"
Vinyl chloride	1.9	1.0	"	"	"	"	"	"
Benzene	6.0	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	1.6	0.50	"	"	"	"	"	"
m,p-Xylene	4.8	1.0	"	"	"	"	"	"
o-Xylene	0.89	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14B_102912_01 T121960-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds b	y EPA Method 8260B
------------------	-------------	--------------------

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		87.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		113 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14C_102912_01 T121960-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by EPA	A 8015C

C6-C12 (GRO)	ND	50	ug/l	1	2103017	10/30/12	10/31/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		54.5 %	65-1	35	"	"	"	"	S-03
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	2.6	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	8.4	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14C_102912_01 T121960-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

3-Dichloropropane	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260E
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	6.1	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.6	1.0	"	"	"	"	"	"
enzene	0.75	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_14C_102912_01 T121960-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds by	y EPA Method	8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		88.4 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		114 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_TB_102912 T121960-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

LL_TB_102912 T121960-04 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/02/12 16:41

LL_TB_102912 T121960-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2103015	10/30/12	10/30/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		98.4 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		89.6 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		115 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/02/12 16:41

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2103017 - EPA 5030 GC										
Blank (2103017-BLK1)				Prepared:	10/30/12	Analyzed	1: 10/31/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	65.2		"	100		65.2	65-135			
LCS (2103017-BS1)				Prepared:	10/30/12	Analyzed	1: 10/31/12			
C6-C12 (GRO)	6030	50	ug/l	5500		110	75-125			
Surrogate 4-Bromofluorobenzene	82.7		"	100		82.7	65-135			
Matrix Spike (2103017-MS1)	Sou	rce: T12196	0-01	Prepared:	10/30/12	Analyzed	1: 10/31/12			
C6-C12 (GRO)	7220	50	ug/l	5500	3780	62.5	65-135			QM-05
Surrogate 4-Bromofluorobenzene	76.2		"	100		76.2	65-135			
Matrix Spike Dup (2103017-MSD1)	Sou	rce: T12196	0-01	Prepared:	10/30/12	Analyzed	1: 10/31/12			
C6-C12 (GRO)	7750	50	ug/l	5500	3780	72.2	65-135	7.11	20	
Surrogate 4-Bromofluorobenzene	75.7		"	100		75.7	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2103015 - EPA 5030 GCMS	Ratch	2103015	- EPA	5030	GCMS
-------------------------------	-------	---------	-------	------	------

Blank (2103015-BLK1)				Prepared & Analyzed: 10/30/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	
1 12				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Batch 2103015 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2103015-BLK1)				Prepared & Analyzed: 10/30/12
p-Isopropyltoluene	ND	1.0	ug/l	-
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	0.50	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	

1.0

5.0

8.00

8.00

8.00

ND

ND

7.91

6.74

9.35

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Methyl tert-butyl ether

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

98.9

84.2

117

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/02/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2103015 - EPA 5030 GCMS										
LCS (2103015-BS1)				Prepared	& Analyz	ed: 10/30/	12			
Chlorobenzene	21.7	1.0	ug/l	20.0		109	75-125			
1,1-Dichloroethene	22.4	1.0	"	20.0		112	75-125			
Trichloroethene	20.1	1.0	"	20.0		100	75-125			
Benzene	22.8	0.50	"	20.0		114	75-125			
Toluene	22.0	0.50	"	20.0		110	75-125			
Surrogate 4-Bromofluorobenzene	8.50		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	7.34		"	8.00		91.8	81-136			
Surrogate Toluene-d8	8.51		"	8.00		106	88.8-117			
Matrix Spike (2103015-MS1)	So	urce: T12196	0-02	Prepared	& Analyzo	ed: 10/30/	12			
Chlorobenzene	21.8	1.0	ug/l	20.0	ND	109	75-125			
1,1-Dichloroethene	43.9	1.0	"	20.0	30.7	66.0	75-125			QM-0'
Trichloroethene	20.6	1.0	"	20.0	81.9	NR	75-125			QM-0'
Benzene	23.2	0.50	"	20.0	6.03	86.0	75-125			
Toluene	21.5	0.50	"	20.0	ND	107	75-125			
Surrogate 4-Bromofluorobenzene	8.49		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.04		"	8.00		100	81-136			
Surrogate Toluene-d8	8.30		"	8.00		104	88.8-117			
Matrix Spike Dup (2103015-MSD1)	So	urce: T12196	0-02	Prepared:	10/30/12	Analyze	d: 10/31/12			
Chlorobenzene	23.4	1.0	ug/l	20.0	ND	117	75-125	6.96	20	
1,1-Dichloroethene	45.1	1.0	"	20.0	30.7	72.2	75-125	2.79	20	QM-0'
Trichloroethene	22.2	1.0	"	20.0	81.9	NR	75-125	7.81	20	QM-0
Benzene	23.9	0.50	"	20.0	6.03	89.6	75-125	2.97	20	
Toluene	23.6	0.50	"	20.0	ND	118	75-125	9.58	20	
Surrogate 4-Bromofluorobenzene	8.50		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	7.87		"	8.00		98.4	81-136			
Surrogate Toluene-d8	8.42		"	8.00		105	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex	Project: Cenco	
15375 Barranca Parkway, Suite K-101	Project Number: 1003-001-300	Reported:
Irvine CA, 92861	Project Manager: Jeremy Squire	11/02/12 16:41

Notes and Definitions

S-03 The surrogate recovery was below acceptance criteria in the sample because of a possible matrix effect. The surrogate recovery was within acceptance criteria in the method blank and LCS.

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each ____

Chain of Custody Record

Client: MUREX ENVIRONMENTAL INC. Address: 2640 Walnut Ave, Unit F Project Name: CENCO Collector: Frane Sosic Client Project #: 1003-001-300 Phone: (714) 508-0800 Fax: (714) 508-0880 Project Manager: Jeremy Squire (714) 604-5836 EDF #: containers (8015 M) m (8260 ō TPHg # Sample Date Sampled Type Sample ID Time Comments/Preservative 102912_01 10.29.12 GW 1037 01 10.29.12 /320 GW 102912-01 102912-01 10.29.12 GW B. 102912 Received by Sign / Date / Time) Date / Time Relinquished by: (signature) Total # of containers Notes F. Sosic 10.29.12 1545, ~ 10/29/12 1545 Chain of Custody seals Received by: (Sign / Date / Time) NA Seals intact? Y/N/NA Received good condition/cold Relinquished by: (signature) Received by: (Sign / Date / Time) Date / Time Turn around time: Standard

Pickup ____

Return to client ____

SAMPLE RECEIVING REVIEW SHEET

BATCH #	12(960					
Client Name:	Murey	Project:	Cenco			
Received by:	Jan	Date/Time Rec	ceived:	lolzali	८ १५५५	
Delivered by:	lient SunStar Courier GSO	FedEx	Other			
Total number of coole	ers received Temp	criteria = 6°C :	> 0°C (no	<u>frozen</u> con	ntainers)	
Temperature: cooler #	$\frac{1}{2.8}$ °C +/- the CF (-0.2°C) =	2.6 °C correc	ted temperati	ıre		
cooler #	#2°C +/- the CF (- 0.2°C) =	°С согтес	ted temperati	ıre		
cooler#	#3°C +/- the CF (- 0.2°C) =	°C correc	ted temperati	ıre		
Samples outside temp	but received on ice, w/in 6 hours of fi	nal sampling.	⊠Yes	□No*	□N/A	
Custody Seals Intact of	on Cooler/Sample		∐Yes	□No*	⊠N/A	
Sample Containers In	tact		⊠Yes	□No*		
Sample labels match	OC ID's		Yes	□No*		
Total number of conta	ainers received match COC		⊠Yes	□No*	f in the second	
Proper containers reco	eived for analyses requested on COC		∑Yes	□No*		
Proper preservative in	dicated on COC/containers for analyse	s requested	∀ Yes	□No*	□N/A	
	ceived in good condition with correct thin method specified holding times.			abels, volu	mes	•
* Complete Non-Confo	rmance Receiving Sheet if checked	Cooler/Sample Re	view - Initia	als and date	1/1	lolzali
Comments:		•				
					<u> </u>	

06 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 10/31/12 15:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Irvine CA, 92861Project Manager: Jeremy Squire

Reported: 11/06/12 10:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_15A_103012_01	T121983-01	Water	10/30/12 10:22	10/31/12 15:10
LL_15B_103012_01	T121983-02	Water	10/30/12 13:30	10/31/12 15:10
LL_15C_103012_01	T121983-03	Water	10/30/12 15:27	10/31/12 15:10
LL_16A_103112_01	T121983-04	Water	10/31/12 11:00	10/31/12 15:10
LL_16B_103112_01	T121983-05	Water	10/31/12 12:34	10/31/12 15:10
LL_16C_103112_01	T121983-06	Water	10/31/12 15:00	10/31/12 15:10
LL_TB_103112	T121983-07	Water	10/30/12 00:00	10/31/12 15:10

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15A_103012_01 T121983-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	4500	50	ug/l	1	2110106	11/01/12	11/02/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		116 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260H	3						
Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	38	1.0	"	"	"	"	"	"
sec-Butylbenzene	7.2	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15A_103012_01 T121983-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	9.1	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	7.1	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	330	1.0	"	"	"	"	"	"	E
n-Propylbenzene	27	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	120	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	270	1.0	"	"	"	"	"	"	E
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	41	0.50	"	"	"	"	"	"	
Toluene	23	0.50	"	"	"	"	"	"	
Ethylbenzene	46	0.50	"	"	"	"	"	"	
m,p-Xylene	260	1.0	"	"	"	"	"	"	E
o-Xylene	75	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	120	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15A_103012_01 T121983-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP	Volatile Organic Compounds by EPA Method 8260B										
Di-isopropyl ether	ND	2.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	39	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		118 %	83.5	119	"	"	"	"			
Surrogate: Dibromofluoromethane		93.1 %	81-	136	"	"	"	"			
Surrogate: Toluene-d8		125 %	88.8	117	"	"	"	"	S-GC		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_15B_103012_01 T121983-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

<u>C6-C12 (GRO)</u> 190	50	ug/l	1	2110106	11/01/12	11/02/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene	67.9 %	65-	-135	"	"	"	"	
Volatile Organic Compounds by EPA Method 8	260B							
Bromobenzene ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Bromochloromethane ND	1.0	"	"	"	"	"	"	
Bromodichloromethane ND	1.0	"	"	"	"	"	"	
Bromoform ND	1.0	"	"	"	"	"	"	
Bromomethane ND	1.0	"	"	"	"	"	"	
n-Butylbenzene 1.3	1.0	"	"	"	"	"	"	
sec-Butylbenzene ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride ND	0.50	"	"	"	"	"	"	
Chlorobenzene ND	1.0	"	"	"	"	"	"	
Chloroethane ND	1.0	"	"	"	"	"	"	
Chloroform ND	1.0	"	"	"	"	"	"	
Chloromethane ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"	
Dibromomethane ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15B_103012_01 T121983-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	6.9	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	43	1.0	"	"	"	"	"	"
n-Propylbenzene	8.1	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	1.4	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	4.0	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	9.2	0.50	"	"	"	"	"	"
Гoluene	2.2	0.50	"	"	"	"	"	"
Ethylbenzene	1.5	0.50	"	"	"	"	"	"
m,p-Xylene	12	1.0	"	"	"	"	"	"
o-Xylene	2.7	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	96	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15B_103012_01 T121983-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Methyl tert-butyl ether	49	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		88.1 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		114 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_15C_103012_01 T121983-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hvarocarbons	DVEPA	るひょうし

C6-C12 (GRO)	120	50	ug/l	1	2110106	11/01/12	11/02/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		62.7 %	65-1	35	"	"	"	"	S-03
Volatile Organic Compounds by EP	A Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	**	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15C_103012_01 T121983-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by 1	EPA Method 8260B	}						
1,2-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	9.9	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	2.9	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	6.6	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	16	0.50	"	"	"	"	"	"
Гoluene	4.9	0.50	"	"	"	"	"	"
Ethylbenzene	3.2	0.50	"	"	"	"	"	"
m,p-Xylene	36	1.0	"	"	"	"	"	"
o-Xylene	7.1	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_15C_103012_01 T121983-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	SunStar La	boratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	3.4	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		92.9 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		112 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

86

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16A_103112_01 T121983-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2110106

11/01/12

11/02/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by EP.	A 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		59.1 %	65-1	35	"	"	"	"	S-03
Volatile Organic Compounds by El	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_16A_103112_01 T121983-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by 1	EPA Method 8260B	3						
1,2-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.4	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.9	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	6.9	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16A_103112_01 T121983-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Substitution Education (1997)											
Volatile Organic Compounds by EPA	Method 8260E	3										
Tert-butyl alcohol	ND	10	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		99.6 %	83.5-119		"	"	"	"				
Surrogate: Dibromofluoromethane		95.2 %	81-1	36	"	"	"	"				
Surrogate: Toluene-d8		114 %	88.8-	117	"	"	"	"				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16B_103112_01 T121983-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	58	50	ug/l	1	2110106	11/01/12	11/02/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		59.7 %	65-1	35	"	"	"	"	S-03
Volatile Organic Compounds by E	PA Method 8260E	3							
Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	_
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	4.2	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	6.6	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_16B_103112_01 T121983-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	15	1.0	"	"	"	"	"	"
Benzene	13	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16B_103112_01 T121983-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP.	A Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		95.5 %	83.5-	119	"	"	"	"	

81-136

88.8-117

95.8 %

111 %

SunStar Laboratories, Inc.

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16C_103112_01 T121983-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

Statile Organic Compounds by EPA Method 8260B Stromobenzene ND	C6-C12 (GRO)	140	50	ug/l	1	2110106	11/01/12	11/02/12	EPA 8015C	
Bromoblenzene ND 1.0 ug/l 1 2110111 11/02/12 EPA 8260B Bromochloromethane ND 1.0 " " " " " " " " "	Surrogate: 4-Bromofluorobenzene		66.7 %	65-1	135	"	"	"	"	
Bromochloromethane ND 1.0 " " " " " " " " "	Volatile Organic Compounds by El	PA Method 8260B								
Bromodichlorententane Bromodichloromethane Brobellorodichloromethane Brobellorodichlorodichlorod	Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Bromoform ND 1.0 " " " " " " " " " " " " " " " " " " "	Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromomethane ND 1.0 " " " " " " " " " " " " " " " " " " "	Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
ND	Bromoform	ND	1.0	"	"	"	"	"	"	
Sec - Butylbenzene ND	Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Chlorobenzene 4.4 1.0 "	tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane ND 1.0 " " " " " " " " " " " " Chloroform ND 1.0 " " " " " " " " " " " " " " " " " " "	Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chloroform ND 1.0 " " " " " " " " " " " " " " " " " " "	Chlorobenzene	4.4	1.0	"	"	"	"	"	"	
Chloromethane ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND 1.0 " " " " " " " " " " 4-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloroform	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " 1,2-Dibromochloromethane ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND 1.0 " " " " " " " " " " 1,2-Dibromo-3-chloropropane ND 1.0 " " " " " " " " " " " " " " 1,2-Dibromo-3-chloropropane ND 1.0 " " " " " " " " " " " " " " " " " " "	2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 1.0 " <	4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 1.0 "	Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
Dibromomethane ND 1.0 "	1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 1.0 " <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 1.0 " <td>Dibromomethane</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 1.0 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 0.50 "	1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane 8.0 1.0 " <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND 0.50 " <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.50</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethane	8.0	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene 16 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene 6.7 1.0 " " " " " "	1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
	cis-1,2-Dichloroethene	16	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND 1.0 " " " " " "	trans-1,2-Dichloroethene	6.7	1.0	"	"	"	"	"	"	
	1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_16C_103112_01 T121983-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.													
Volatile Organic Compounds by EPA Method 8260B													
1,3-Dichloropropane	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B					
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	ii .					
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	ii .					
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"					
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"					
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	II .					
Isopropylbenzene	ND	1.0	"	"	"	"	"	ii .					
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"					
Methylene chloride	ND	1.0	"	"	"	"	"	"					
Naphthalene	ND	1.0	"	"	"	"	"	"					
n-Propylbenzene	ND	1.0	"	"	"	"	"	"					
Styrene	ND	1.0	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"					
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"					
Tetrachloroethene	ND	1.0	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"					
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"					
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"					
Trichloroethene	ND	1.0	"	"	"	"	"	"					
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	ii .					
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"					
Vinyl chloride	50	1.0	"	"	"	"	"	"					
Benzene	10	0.50	"	"	"	"	"	"					
Toluene	ND	0.50	"	"	"	"	"	"					
Ethylbenzene	ND	0.50	"	"	"	"	"	"					
m,p-Xylene	ND	1.0	"	"	"	"	"	"					
o-Xylene	ND	0.50	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"					
Tert-butyl alcohol	ND	10	"	"	"	"	"	"					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_16C_103112_01 T121983-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Volatile Organic Compounds by EPA Method 8260B												
Di-isopropyl ether	ND	2.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"					
1.1.2-trichloro-1.2.2-trifluoroethane	ND	5.0	"	"	"	"	"	"					

(CFC 113)	ND	5.0					
Surrogate: 4-Bromofluorobenzene		96.1 %	83.5-119	"	"	"	"
Surrogate: Dibromofluoromethane		94.4 %	81-136	"	"	"	"
Surrogate: Toluene-d8		114 %	88.8-117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

LL_TB_103112 T121983-07 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.									
Volatile Organic Compounds by	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_TB_103112 T121983-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Coluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 10:31

LL_TB_103112 T121983-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

, crace c - B arrer c c - c									
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2110111	11/01/12	11/02/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		94.0 %	83.5-119	7	"	"	"	"	
Surrogate: Dibromofluoromethane		93.9 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		114 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110106 - EPA 5030 GC										
Blank (2110106-BLK1)				Prepared:	11/01/12	Analyzed	1: 11/02/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	65.1		"	100		65.1	65-135			
LCS (2110106-BS1)				Prepared:	11/01/12	Analyzed	l: 11/02/12			
C6-C12 (GRO)	5740	50	ug/l	5500		104	75-125			
Surrogate 4-Bromofluorobenzene	90.3		"	100		90.3	65-135			
Matrix Spike (2110106-MS1)	Sou	rce: T12198	3-01	Prepared:	11/01/12	Analyzed	1: 11/02/12			
C6-C12 (GRO)	7590	50	ug/l	5500	4460	57.0	65-135			QM-02
Surrogate 4-Bromofluorobenzene	93.2		"	100		93.2	65-135			
Matrix Spike Dup (2110106-MSD1)	Sou	rce: T12198	3-01	Prepared:	11/01/12	Analyzed	l: 11/02/12			
C6-C12 (GRO)	7260	50	ug/l	5500	4460	51.0	65-135	4.48	20	QM-02
Surrogate 4-Bromofluorobenzene	84.8		"	100		84.8	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

evandy flsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

1.0

1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

1 mary to	1105411	2	Cinto	Ector	resure	701120	Ziiiii	ru B	Emm	11000
Batch 2110111 - EPA 5030 GCMS	5									
Blank (2110111-BLK1)				Prepared:	: 11/01/12	Analyzed	: 11/02/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
ert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
,1-Dichloroethene	ND	1.0	"							
eis-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
eis-1,3-Dichloropropene	ND	0.50	"							
rans-1,3-Dichloropropene	ND	0.50	"							

SunStar Laboratories, Inc.

Hexachlorobutadiene

Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flias

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2110111-BLK1)				Prepared: 11/0	1/12 Analyze	ed: 11/02/12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
1,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
Toluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
m,p-Xylene	ND	1.0	"			
o-Xylene	ND	0.50	"			
Tert-amyl methyl ether	ND	2.0	"			
Tert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	7.35		"	8.00	91.9	83.5-119
Surrogate Dibromofluoromethane	7.43		"	8.00	92.9	81-136
Surrogate Toluene-d8	9.28		"	8.00	116	88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110111 - EPA 5030 GCMS										
LCS (2110111-BS1)				Prepared:	11/01/12	Analyze	d: 11/03/12			
Chlorobenzene	21.9	1.0	ug/l	20.0		110	75-125			
1,1-Dichloroethene	19.2	1.0	"	20.0		96.2	75-125			
Trichloroethene	18.2	1.0	"	20.0		91.2	75-125			
Benzene	23.3	0.50	"	20.0		117	75-125			
Toluene	20.6	0.50	"	20.0		103	75-125			
Surrogate 4-Bromofluorobenzene	8.01		"	8.00		100	83.5-119			
Surrogate Dibromofluoromethane	9.62		"	8.00		120	81-136			
Surrogate Toluene-d8	8.44		"	8.00		106	88.8-117			
Matrix Spike (2110111-MS1)	So	urce: T12198	3-01	Prepared:	11/01/12	Analyze	d: 11/03/12			
Chlorobenzene	23.0	1.0	ug/l	20.0	ND	115	75-125			
1,1-Dichloroethene	16.9	1.0	"	20.0	ND	84.4	75-125			
Trichloroethene	19.2	1.0	"	20.0	ND	96.1	75-125			
Benzene	79.1	0.50	"	20.0	41.0	190	75-125			QM-07
Toluene	52.1	0.50	"	20.0	23.4	144	75-125			QM-07
Surrogate 4-Bromofluorobenzene	9.14		"	8.00		114	83.5-119			
Surrogate Dibromofluoromethane	8.36		"	8.00		104	81-136			
Surrogate Toluene-d8	9.14		"	8.00		114	88.8-117			
Matrix Spike Dup (2110111-MSD1)	So	urce: T12198	3-01	Prepared:	11/01/12	Analyze	d: 11/03/12	<u> </u>		
Chlorobenzene	24.1	1.0	ug/l	20.0	ND	120	75-125	4.67	20	
1,1-Dichloroethene	16.2	1.0	"	20.0	ND	81.0	75-125	4.05	20	
Trichloroethene	19.2	1.0	"	20.0	ND	96.0	75-125	0.156	20	
Benzene	74.3	0.50	"	20.0	41.0	166	75-125	6.32	20	QM-07
Toluene	52.1	0.50	"	20.0	23.4	144	75-125	0.0384	20	QM-07
Surrogate 4-Bromofluorobenzene	10.5		"	8.00		131	83.5-119			S-GC
Surrogate Dibromofluoromethane	7.96		"	8.00		99.5	81-136			
Surrogate Toluene-d8	9.40		"	8.00		118	88.8-117			S-GO

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex	Project: Cenco	
15375 Barranca Parkway, Suite K-101	Project Number: 1003-001-300	Reported:
Irvine CA, 92861	Project Manager: Jeremy Squire	11/06/12 10:31

Notes and Definitions

S-GC	Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
S-03	The surrogate recovery was below acceptance criteria in the sample because of a possible matrix effect. The surrogate recovery was within acceptance criteria in the method blank and LCS.
QM-07	The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
E	The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an estimate as the actual value may be higher.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SunStar Laboratories, Inc.

Chain of Custody Record

25712 Commercentre Dr
Lake Forest, CA 92630
949-297-5020

Cliante			INIC
JIIUII.	MUKEY	ENVIRONMENTAL	IIIVO.

Address: 2640 Walnut Ave, Unit F

Phone: (714) 508-0800 Fax: (714) 508-0880

Project Manager: Jeremy Squire (714) 604-5836

Project Name: CENCO

Collector: Frane Sosic Batch #: T121983 Client Project #: 1003-001-300

EDF #:_____

											·			т		<u> </u>
					(8260 B)								The state of the s	of containers		#QI A
Sample ID	Date Sampled	Time	Sample Type	TPHg	VOCs							i.	-	Total # o	Comments/Preservative	-aboratory
LL_15A_103012_01	10-30-12	10:22	GW	X	Ź			\top		\dashv	\top		<u>├</u>	6		-
11_158_103012_01	10-30-12		GW	X	X						十			6		67
LL_15C_103012_01	10.30.12	15:24	GW	X	X						\top			6		03
L 16 A 103112 01	10.31.1Z	11:00	GW	X	X				\Box					6	4 F.S.	0
11_16B_10311Z_01	10.31.12	12:34	GW	X	X									6		65
LL_16C_108112_01	10.31.12	15:00	GW	X	X									6		06
LL_TB_103/12			Water		X									2		0
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S	ign / [Date / ⁻	Time)	To	tal# c	of cont	ainer	s	1	36	Notes	
F. Soic	10.31.12	5:10			/ / 10	0/311	12 15	Ch Ch	ain of	Custo	dy se	als		,		
Relinquished by: (signature)	Date / Ti	me	Received b		ign / [Date / ⁻	Γime)	Sea		act? Y		A	M	À		
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S	ign / [Date /	Time)		MINO	, wid			<u> </u>	-		
								Tu	rn arc	ound t	time	:	Standa	ard		

Sample disposal Instructions: Disposal @ \$2.00 each

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH# \ \ \2(983		•			
Client Name: Murex Pro	oject:	Cenc	٥		
Received by: Dan M	te/Time Re	eceived:	101311	12 1510)
Delivered by: Client SunStar Courier GSO [FedEx	Other			
Total number of coolers received Temp crite	eria = 6°C	> 0°C (no	<u>frozen</u> co	ntainers)	
Temperature: cooler #1 6.2 °C +/- the CF (-0.2°C) = 6.	o_°C corre	cted temperat	ure		
cooler #2°C +/- the CF (- 0.2°C) =	°C corre	cted temperat	ure		
cooler #3°C +/- the CF (- 0.2°C) =	°C corre	cted temperat	ure		• .
Samples outside temp. but received on ice, w/in 6 hours of final s	sampling.	⊠Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample		□Yes	□No*	⊠N/A	
Sample Containers Intact		⊠ Yes	□No*		
Sample labels match COC ID's		⊠Yes	□No*		
Total number of containers received match COC	• ,	⊠Yes	□No*	•	
Proper containers received for analyses requested on COC		⊠Yes	□No*		
Proper preservative indicated on COC/containers for analyses rec	quested	⊠Yes	∐No*	□N/A	
Complete shipment received in good condition with correct temp preservatives and within method specified holding times. X		-	abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked Coole	er/Sample R	eview - Initi	als and date	M	101
Comments:			J		
	- 1 1 N	·			·

06 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/01/12 16:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez For Wendy Hsiao

Saniel & Chivy

Project Manager

Reported:

11/06/12 17:26

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_17A_110112_01	T121994-01	Water	11/01/12 10:27	11/01/12 16:00
LL_17B_110112_01	T121994-02	Water	11/01/12 13:16	11/01/12 16:00
LL_17C_110112_01	T121994-03	Water	11/01/12 15:45	11/01/12 16:00
LL_TB_110112	T121994-04	Water	11/01/12 00:00	11/01/12 16:00

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

LL_17A_110112_01 T121994-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	100	50	ug/l	1	2110219	11/02/12	11/05/12	EPA 8015C
Surrogate 4-Bromofluorobenzene		85.8 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260I	3						
Bromobenzene	ND	1.0	ug/l	1	2110208	11/02/12	11/02/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	1.1	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	6.6	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17A_110112_01 T121994-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2110208	11/02/12	11/02/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
[exachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17A_110112_01 T121994-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP	A Method 8260B							
Tert-butyl alcohol	12	10	ug/l	1	2110208	11/02/12	11/02/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate 4-Bromofluorobenzene		107 %	83.5-	119	"	"	"	"
Surrogate Dibromofluoromethane		108 %	81-1	36	"	"	"	"
Surrogate Toluene-d8		103 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17B_110112_01 T121994-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbon	s by EPA 8015C								
C6-C12 (GRO)	ND	50	ug/l	1	2110219	11/02/12	11/05/12	EPA 8015C	
G		02.2.0/	65 1	25	,,	"	,,	"	

Surrogate 4-Bromofluorobenzene		92.2 %	65-135	5	"	"	"	"	
Volatile Organic Compounds by EPA Metho	od 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17B_110112_01 T121994-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260H
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

LL_17B_110112_01 T121994-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Tert-butyl alcohol	24	10	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate Dibromofluoromethane		214 %	81-1	36	"	"	"	"	S-GC
Surrogate Toluene-d8		75.9 %	88.8-	117	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17C_110112_01 T121994-03 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbo	ons by EPA 8015C							
C6-C12 (GRO)	ND	50	ug/l	1	2110219	11/02/12	11/05/12	EPA 8015C

Surrogate 4-Bromofluorobenzene		84.5 %	65-135	5	"	"	"	"	
Volatile Organic Compounds by EPA Metho	od 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110208	11/02/12	11/06/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_17C_110112_01 T121994-03 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc. Volatile Organic Compounds by EPA Method 8260B												
Volatile Organic Compounds by El 1,2-Dichloropropane	PA Method 8260F ND	1.0	ug/l	1	2110208	11/02/12	11/06/12	EPA 8260B				
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"				
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"				
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"				
Isopropylbenzene	ND	1.0	"	"	"	"	"	"				
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	n .				
Methylene chloride	ND	1.0	"	"	"	"	"	"				
Naphthalene	ND	1.0	"	"	"	"	"	n .				
n-Propylbenzene	ND	1.0	"	"	"	"	"	n .				
Styrene	ND	1.0	"	"	"	"	"	n .				
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	n .				
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"				
Γetrachloroethene	ND	1.0	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	n .				
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	n .				
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	n .				
Γrichloroethene	ND	1.0	"	"	"	"	"	"				
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	n .				
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	n .				
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	n .				
Vinyl chloride	ND	1.0	"	"	"	"	"	n .				
Benzene	ND	0.50	"	"	"	"	"	n .				
Γoluene	ND	0.50	"	"	"	"	"	n .				
Ethylbenzene	ND	0.50	"	"	"	"	"	"				
m,p-Xylene	ND	1.0	"	"	"	"	"	"				
o-Xylene	ND	0.50	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

LL_17C_110112_01 T121994-03 (Water)

		Reporting							
Ana	lyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Tert-butyl alcohol	11	10	ug/l	1	2110208	11/02/12	11/06/12	EPA 8260B			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	II.	"	"			
Surrogate 4-Bromofluorobenzene		107 %	83.5-	119	"	"	"	"			
Surrogate Dibromofluoromethane		110 %	81-1	36	"	"	"	"			
Surrogate Toluene-d8		93.2 %	88.8-	117	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

LL_TB_110112 T121994-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	r.	ounstal La	เมษา สเษา	es, IIIc.					
Volatile Organic Compounds by E	EPA Method 8260B	3							
Bromobenzene	ND	1.0	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

LL_TB_110112 T121994-04 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

LL_TB_110112 T121994-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

· · · · · · · · · · · · · · · · · · ·									
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2110208	11/02/12	11/05/12	EPA 8260B	
Surrogate 4-Bromofluorobenzene		98.9 %	83.5-119)	"	"	"	"	
Surrogate Dibromofluoromethane		154 %	81-136		"	"	"	"	S-GC
Surrogate Toluene-d8		82.4 %	88.8-117	7	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110219 - EPA 5030 GC										
Blank (2110219-BLK1)				Prepared:	11/02/12	Analyzed	1: 11/05/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	115		"	100		115	65-135			
LCS (2110219-BS1)				Prepared:	11/02/12	Analyzed	l: 11/05/12			
C6-C12 (GRO)	5250	50	ug/l	5500		95.4	75-125			
Surrogate 4-Bromofluorobenzene	112		"	100		112	65-135			
Matrix Spike (2110219-MS1)	Sor	arce: T12199	4-01	Prepared: 11/02/12 Analyzed: 11/05/1			l: 11/05/12			
C6-C12 (GRO)	5560	50	ug/l	5500	102	99.2	65-135			
Surrogate 4-Bromofluorobenzene	108		"	100		108	65-135			
Matrix Spike Dup (2110219-MSD1)	Sor	arce: T12199	4-01	Prepared:	11/02/12	Analyzed	l: 11/05/12			
C6-C12 (GRO)	5510	50	ug/l	5500	102	98.4	65-135	0.785	20	
Surrogate 4-Bromofluorobenzene	107		"	100		107	65-135			

SunStar Laboratories, Inc.

Saviel & Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
•										

Batch	2110208	- EPA 5030	GCMS
-------	---------	------------	------

Blank (2110208-BLK1)				Prepared & Analyzed: 11/02/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/06/12 17:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Batch 2110208 - EPA 5030 GCMS	Result	Limit	Units	Level	Result	%KEC	Lillits	KPD	LIIIII	Notes
Analyte	Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Blank (2110208-BLK1)				Prepared & An	alyzed: 11/02	/12	
-Isopropyltoluene	ND	1.0	ug/l				
Methylene chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
,1,2,2-Tetrachloroethane	ND	1.0	"				
,1,1,2-Tetrachloroethane	ND	1.0	"				
Cetrachloroethene	ND	1.0	"				
,2,3-Trichlorobenzene	ND	1.0	"				
,2,4-Trichlorobenzene	ND	1.0	"				
,1,2-Trichloroethane	ND	1.0	"				
1,1-Trichloroethane	ND	1.0	"				
richloroethene	ND	1.0	"				
ichlorofluoromethane	ND	1.0	"				
2,3-Trichloropropane	ND	1.0	"				
3,5-Trimethylbenzene	ND	1.0	"				
4-Trimethylbenzene	ND	1.0	"				
nyl chloride	ND	1.0	"				
nzene	ND	0.50	"				
luene	ND	0.50	"				
nylbenzene	ND	0.50	"				
o-Xylene	ND	1.0	"				
Kylene	ND	0.50	"				
rt-amyl methyl ether	ND	2.0	"				
rt-butyl alcohol	ND	10	"				
-isopropyl ether	ND	2.0	"				
hyl tert-butyl ether	ND	2.0	"				
ethyl tert-butyl ether	ND	1.0	"				
1,2-trichloro-1,2,2-trifluoroethane (CFC 3)	ND	5.0	"				
urrogate 4-Bromofluorobenzene	8.42		"	8.00	105	83.5-119	
urrogate Dibromofluoromethane	9.87		"	8.00	123	81-136	
urrogate Toluene-d8	7.76		"	8.00	97.0	88.8-117	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110208 - EPA 5030 GCMS										
LCS (2110208-BS1)				Prepared:	11/02/12	Analyzed	1: 11/06/12			
Chlorobenzene	22 9	1.0	ug/l	20.0		115	75-125			
1,1-Dichloroethene	21.6	1.0	"	20.0		108	75-125			
Trichloroethene	22 9	1.0	"	20.0		114	75-125			
Benzene	23.4	0.50	"	20.0		117	75-125			
Toluene	24.0	0.50	"	20.0		120	75-125			
Surrogate 4-Bromofluorobenzene	8.14		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	8.85		"	8.00		111	81-136			
Surrogate Toluene-d8	7.05		"	8.00		88.1	88.8-117			S-GC
LCS Dup (2110208-BSD1)				Prepared:	11/02/12	Analyzed	d: 11/06/12			
Chlorobenzene	22 2	1.0	ug/l	20.0		111	75-125	3.05	20	
1,1-Dichloroethene	23.4	1.0	"	20.0		117	75-125	8.10	20	
Trichloroethene	21 1	1.0	"	20.0		106	75-125	7.91	20	
Benzene	22 2	0.50	"	20.0		111	75-125	5.22	20	
Toluene	22.6	0.50	"	20.0		113	75-125	5.89	20	
Surrogate 4-Bromofluorobenzene	8.35		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	9.29		"	8.00		116	81-136			
Surrogate Toluene-d8	7.30		"	8.00		91.2	88.8-117			

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/06/12 17:26

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Saviel & Chivy

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL	INC.						Da	te:_	11.	<u>· [·</u>	2	01	2			_	Pag	je:	<u> </u>	_ OF _		
Address: 2640 Walnut Ave, Unit F							Pro	oject	Na	me	:	CEI	VC()								
Phone: (714) 508-0800 Fax: (714) 508-0880						Co	llect	or:	Frane Sosic					`	Clie	-001-300						
Project Manager: Jeremy Squire (714) 604-5836							Batch #:							EDF	F#:							
				15 M)	60 B)												containers		Magnetities to the second			
	Date		Sample	TPHg (8015)													Total # of con					Laboratory ID
Sample ID	Sampled	Time	Type	E	×		_	\sqcup					_	\dashv	4				Commer	ts/Prese	ervative	La
CL_17A_110112_01	11.1.12	10:Z7	GW	\mathcal{X}	X	\vdash	ļ				_	Щ	_	_	_		6	<u> </u>		· .		01
LL_17B_110112_01	11.1.12	13.16	GW	\mathcal{L}	X		<u> </u>	1		_	_		_	\dashv	4		6	ļ				oz
[L_17C_11011Z_01	11.1.12	15:45		ЦX.	ŲΧ	_	_			<u> </u>			_	_	_		6					03
LL_TB_IIOIZ			Water		X												2		·····			04
				-	-	+	-								1							
														\Box	\Box							
				╄	<u> </u>	↓_	<u> </u>	\square	_	_	ļ		_		\perp			<u> </u>				
Polinguished by (cignoture)	Date / T	ime	Paceived	by: (S	Sign	/Dat	to / T	Cime)		То	tal #	of co	otoin	ore	4		20	<u> </u>		Noto		
Relinquished by: (signature) Date / Time F.Seic 1.1.20 2 1600		Received by: (Sign / Da			ال -	11/12		<i>7</i> 00	∧ 		Total # of containers Chain of Custody seals			N		Notes		5				
Relinquished by: (signature)	Date / T	ime	Received by: (Sign / Da			/ Dat	ate / Time)			Seals intact? Y/N/NA Received good condition/cold					J.	⊌(A						
Relinquished by: (signature)	Date / T	ime	Received	by: (S	Sign	/ Dat	te / T	rime)		_	· .	ound				Y tand		4.6)			
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return t	o client		P	ickup	`			<u> </u>	ii ai	June	. uiii	.		anu	aru					

SAMPLE RECEIVING REVIEW SHEET

BATCH #					
Client Name: Mukex	Project:	CENCO			
Received by:	Date/Time	Received: //	1.1.12	15:00	
Delivered by: Client SunStar Courier GSO	FedE	x 🗌 Other			
Total number of coolers received Temp of	criteria = 6	°C > 0°C (no	frozen con	tainers)	
Temperature: cooler #1 $\underline{4.2}$ °C +/- the CF (-0.2°C) =	<i>4,6</i> °C co	rrected temperatu	ire		
cooler #2°C +/- the CF (- 0.2°C) =	°C c	prrected temperatu	ire		
cooler #3°C +/- the CF (-0.2°C) =	°C c	prrected temperatu	ire		
Samples outside temp. but received on ice, w/in 6 hours of fir	nal sampling	g. 🛛 Yes	□No*	□N/A	•
Custody Seals Intact on Cooler/Sample		□Yes	□No*	X/N/A	
Sample Containers Intact		¥Yes	□No*		
Sample labels match COC ID's		¥Yes	□No*		
Total number of containers received match COC		¥Yes	□No*		
Proper containers received for analyses requested on COC		⊠Yes	□No*		
Proper preservative indicated on COC/containers for analyses	requested	ĭ Yes	□No*	□N/A	
Complete shipment received in good condition with correct te preservatives and within method specified holding times.		, containers, la No*	bels, volu	nes	
* Complete Non-Conformance Receiving Sheet if checked C	ooler/Sample	e Review - Initia	als and date	BC 11.2.13	2
Comments:					
	· · · · · · · · · · · · · · · · · · ·				
			·	-	

08 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/05/12 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/08/12 14:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W4_110512_01	T122015-01	Water	11/05/12 09:45	11/05/12 16:30
LL_W1_110512_01	T122015-02	Water	11/05/12 13:00	11/05/12 16:30
LL_503B_110512_01	T122015-03	Water	11/05/12 15:30	11/05/12 16:30
LL_TB_110512	T122015-04	Water	11/05/12 00:00	11/05/12 16:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject:Cenco15375 Barranca Parkway, Suite K-101Project Number:1003-001-300Reported:Irvine CA, 92861Project Manager:Jeremy Squire11/08/12 14:54

LL_W4_110512_01 T122015-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	ND	50	ug/l	1	2110614	11/06/12	11/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		88.5 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EF	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.0	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
1-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/08/12 14:54

LL_W4_110512_01 T122015-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	6.3	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	2.5	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/08/12 14:54

LL_W4_110512_01 T122015-01 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Tert-butyl alcohol	ND	10	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"
(CFC 113)								

 Surrogate: 4-Bromofluorobenzene
 98.2 %
 83.5-119
 " " " "

 Surrogate: Dibromofluoromethane
 85.6 %
 81-136
 " " " " "

 Surrogate: Toluene-d8
 118 %
 88.8-117
 " " " " " S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

67

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/08/12 14:54

LL_W1_110512_01 T122015-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2110614

11/06/12

11/06/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		82.5 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	**	"	"	"	"	"
Chloromethane	ND	1.0	**	"	"	"	"	"
2-Chlorotoluene	ND	1.0	**	"	"	"	"	"
4-Chlorotoluene	ND	1.0	**	"	"	"	"	"
Dibromochloromethane	ND	1.0	**	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	**	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_W1_110512_01 T122015-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	4.4	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	1.2	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/08/12 14:54

LL_W1_110512_01 T122015-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.2 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		83.9 %	81-1	36	"	"	"	"	

88.8-117

119 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

S-GC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_503B_110512_01 T122015-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroieum	пуштосатоонѕ	DVEPA	00150

C6-C12 (GRO)	680	50	ug/l	1	2110614	11/06/12	11/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		89.4 %	65-13	5	"	"	"	"
Volatile Organic Compounds by EPA Metho	od 8260B							
Bromobenzene	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	n .
Bromoform	ND	1.0	"	"	"	"	"	n .
Bromomethane	ND	1.0	"	"	"	"	"	n .
n-Butylbenzene	2.9	1.0	"	"	"	"	"	11
sec-Butylbenzene	ND	1.0	"	"	"	"	"	n .
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	11
Chlorobenzene	ND	1.0	"	"	"	"	"	11
Chloroethane	ND	1.0	"	"	"	"	"	II .
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	II .
4-Chlorotoluene	ND	1.0	"	"	"	"	"	II .
Dibromochloromethane	ND	1.0	"	"	"	"	"	II .
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	II .
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	II .
Dibromomethane	ND	1.0	"	"	"	"	"	II .
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
	ND	0.50	"	"	"	"	"	"
	ND	1.0	"	"	"	"	"	"
	ND	1.0	"	"	"	"	"	"
	ND	1.0	"	"	"	"	"	"
	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_503B_110512_01 T122015-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	23	1.0	"	"	"	"	"	"
n-Propylbenzene	2.7	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	5.5	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	24	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	120	0.50	"	"	"	"	"	"
Toluene	2.1	0.50	"	"	"	"	"	"
Ethylbenzene	5.4	0.50	"	"	"	"	"	"
m,p-Xylene	19	1.0	"	"	"	"	"	"
o-Xylene	4.4	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	12	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_503B_110512_01 T122015-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	EPA Method 8260B
--	-------------------------	--------------	------------------

The state of the s									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B	
Methyl tert-butyl ether	1.3	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		85.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		120 %	88.8-	117	"	"	"	"	S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_TB_110512 T122015-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

LL_TB_110512 T122015-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/08/12 14:54

LL_TB_110512 T122015-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2110616	11/06/12	11/06/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		96.1 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		86.2 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		117 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110614 - EPA 5030 GC										
Blank (2110614-BLK1)				Prepared	& Analyze	ed: 11/06/	12			
C6-C12 (GRO)	ND	50	ug/l	-						
Surrogate 4-Bromofluorobenzene	47.5		"	50.0		95.1	65-135			
LCS (2110614-BS1)				Prepared	& Analyze	ed: 11/06/	12			
C6-C12 (GRO)	5640	50	ug/l	5500		103	75-125			
Surrogate 4-Bromofluorobenzene	53.6		"	50.0		107	65-135			
Matrix Spike (2110614-MS1)	Soi	ırce: T12201	5-01	Prepared	& Analyze	ed: 11/06/	12			
C6-C12 (GRO)	5740	50	ug/l	5500	ND	104	65-135			
Surrogate 4-Bromofluorobenzene	54.2		"	50.0		108	65-135			
Matrix Spike Dup (2110614-MSD1)	Sou	ırce: T12201	5-01	Prepared & Analyzed: 11/06/12						
C6-C12 (GRO)	5640	50	ug/l	5500	ND	103	65-135	1.72	20	
Surrogate 4-Bromofluorobenzene	50.0		"	50.0		100	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2110616 - H	PA 5030	GCMS
-------------------	---------	------

Blank (2110616-BLK1)				Prepared & Analyzed: 11/06/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Batch 2110616 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

7.67

6.82

9.58

1.0

5.0

8.00

8.00

8.00

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2110616-BLK1)				Prepared & Analyzed: 11/06/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Methyl tert-butyl ether

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

95.9

85.2

120

evandy flsia

S-GC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110616 - EPA 5030 GCMS										
LCS (2110616-BS1)				Prepared	& Analyz	ed: 11/06/	12			
Chlorobenzene	22.1	1.0	ug/l	20.0		111	75-125			
1,1-Dichloroethene	22.7	1.0	"	20.0		114	75-125			
Trichloroethene	20.9	1.0	"	20.0		104	75-125			
Benzene	23.0	0.50	"	20.0		115	75-125			
Toluene	22.1	0.50	"	20.0		110	75-125			
Surrogate 4-Bromofluorobenzene	8.26		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.02		"	8.00		87.8	81-136			
Surrogate Toluene-d8	8.43		"	8.00		105	88.8-117			
Matrix Spike (2110616-MS1)	So	urce: T12201								
Chlorobenzene	22.1	1.0	ug/l	20.0	ND	110	75-125			
1,1-Dichloroethene	21.8	1.0	"	20.0	ND	109	75-125			
Trichloroethene	22.1	1.0	"	20.0	ND	110	75-125			
Benzene	23.9	0.50	"	20.0	ND	120	75-125			
Toluene	22.8	0.50	"	20.0	ND	114	75-125			
Surrogate 4-Bromofluorobenzene	7.19		"	8.00		89.9	83.5-119			
Surrogate Dibromofluoromethane	7.20		"	8.00		90.0	81-136			
Surrogate Toluene-d8	7.90		"	8.00		98.8	88.8-117			
Matrix Spike Dup (2110616-MSD1)	So	urce: T12201	5-01	Prepared	& Analyz	ed: 11/06/	12			
Chlorobenzene	23.7	1.0	ug/l	20.0	ND	118	75-125	6.82	20	
1,1-Dichloroethene	21.6	1.0	"	20.0	ND	108	75-125	1.24	20	
Trichloroethene	22.7	1.0	"	20.0	ND	114	75-125	2.81	20	
Benzene	23.8	0.50	"	20.0	ND	119	75-125	0.461	20	
Toluene	23.1	0.50	"	20.0	ND	116	75-125	1.13	20	
Surrogate 4-Bromofluorobenzene	8.27		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.28		"	8.00		91.0	81-136			
Surrogate Toluene-d8	7.67		"	8.00		95.9	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/08/12 14:54

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flsia

SunStar Laboratories, Inc. 25712 Commercentre Dr

Chain of Custody Record

Lake Forest, CA 92630-949-297-5020

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7		Pro Co	oject Name: CENCO ollector: Frane Sosic (Page: / OF / Client Project #: 1003-001-300 EDF #:							
Sample ID LL_W4_110512_01 LL_W1_110512_01 LL_5038_110512_01 LL_TB_110512	Date Sampled <i>II-5-12</i> <i>II-5-12</i> <i>II-5-1</i> 2		Sample Type GW GW	(8015	XXXXVOCs (8260 B)										N M M Total # of containers	Comments/Preservative	O O O O O O O O O O O O O O O O O O O
					十				\top	-			7				1
			<u> </u>					_	\perp	_ _	_	igsqcup	_				4
Relinquished by: (signature) Relinquished by: (signature)	Date / T 	1630	Received Received		ا '' سا	1-5-1	216	30 C	hain Seals	# of Cu	stody ? Y/N	seals			20 J IA	Notes	
Relinquished by: (signature) Sample disposal Instructions: Disposal @ \$2.0	Date / T		Received to client	by: (S	ign / [Time)	c	ondit	ved go ion/co arour	ld	ne:	St	Y			

SAMPLE RECEIVING REVIEW SHEET

BATCH# T122015					
Client Name: Morex	Project:	Cenc	0		
Received by: Jan M	Date/Time Rec	eived:	1115/12	1630	
Delivered by:	☐ FedEx	Other			
Total number of coolers received Temp cr	riteria = 6°C >	°C (no	<u>frozen</u> cor	itainers)	
Temperature: cooler #1 _ \(\(\phi \) \(\cool \) C +/- the CF (-0.2°C) = _	<u>∪</u> °C correct	ed temperati	ire		
cooler #2°C +/- the CF (- 0.2°C) = _	°C correct	ed temperat	ure		
cooler #3°C +/- the CF (- 0.2°C) = _	°C correct	ted temperate	ure		
Samples outside temp. but received on ice, w/in 6 hours of fina	al sampling.	⊠Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample		∐Yes	□No*	⊠N/A	
Sample Containers Intact		ΣΥes	□No*		
Sample labels match COC ID's		∑Yes	□No*		
Total number of containers received match COC		⊠Yes	□No*		
Proper containers received for analyses requested on COC		∑ Yes	□No*		
Proper preservative indicated on COC/containers for analyses	requested	⊠Yes	□No*	□N/A	
Complete shipment received in good condition with correct ter preservatives and within method specified holding times.			abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked Co	oler/Sample Re	view - Initia	als and date	M	<u> </u>
Comments:					
					0.00

09 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/06/12 15:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_104A_110612_01	T122027-01	Water	11/06/12 10:00	11/06/12 15:45
LL_106A_110612_01	T122027-02	Water	11/06/12 12:50	11/06/12 15:45
LL_107A_110612_01	T122027-03	Water	11/06/12 15:32	11/06/12 15:45
LL_TB_110612_01	T122027-04	Water	11/06/12 00:00	11/06/12 15:45

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_104A_110612_01 T122027-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	ND	50	ug/l	1	2110716	11/07/12	11/09/12	EPA 8015C
urrogate: 4-Bromofluorobenzene		95.0 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	1.7	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_104A_110612_01 T122027-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_104A_110612_01 T122027-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	SunStar La	boratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		90.6 %	81-1.	36	"	"	"	"	
Surrogate: Toluene-d8		117 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_106A_110612_01 T122027-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	610	50	ug/l	1	2110716	11/07/12	11/09/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		112 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA M	Iethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.0	1.0	"	"	"	"	"	"
sec-Butylbenzene	13	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.8	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	,,	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_106A_110612_01 T122027-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by l	EPA Method 8260B	}						
1,3-Dichloropropane	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	94	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	1.5	1.0	"	"	"	"	"	"
n-Propylbenzene	74	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	1.0	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	78	1.0	"	"	"	"	"	"
Benzene	6.9	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	0.83	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_106A_110612_01 T122027-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		89.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		119 %	88.8-	117	"	"	"	"	S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EPA 8015C

11/09/12

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_107A_110612_01 T122027-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2110716 11/07/12

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		87.9 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260I	3							
Bromobenzene	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	**	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_107A_110612_01 T122027-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	\$	SunStar La	boratori	es, Inc.				
Volatile Organic Compounds by 1								
,2-Dichloropropane	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
sis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_107A_110612_01 T122027-03 (Water)

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar La	borator	ies, Inc.									
Volatile Organic Compounds by EPA Method 8260B													
Tert-butyl alcohol	ND	10	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B					
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"					
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		96.5 %	83.5-	119	"	"	"	"					
Surrogate: Dibromofluoromethane		91.4 %	81-1	36	"	"	"	"					
Surrogate: Toluene-d8		116 %	88.8-	117	"	"	"	"					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

LL_TB_110612_01 T122027-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_TB_110612_01 T122027-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/09/12 16:51

LL_TB_110612_01 T122027-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2110717	11/07/12	11/07/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		96.2 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		88.8 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		115 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110716 - EPA 5030 GC										
Blank (2110716-BLK1)				Prepared:	11/07/12	Analyzed	: 11/09/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	85.6		"	100		85.6	65-135			
LCS (2110716-BS1)				Prepared:	11/07/12	Analyzed	: 11/09/12			
C6-C12 (GRO)	4810	50	ug/l	5500		87.4	75-125			
Surrogate 4-Bromofluorobenzene	87.4		"	100		87.4	65-135			
Matrix Spike (2110716-MS1)	Sou	rce: T12202	7-01	Prepared:						
C6-C12 (GRO)	3700	50	ug/l	5500	ND	67.3	65-135			
Surrogate 4-Bromofluorobenzene	93.6		"	100		93.6	65-135			
Matrix Spike Dup (2110716-MSD1)	Source: T122027-01			Prepared:						
C6-C12 (GRO)	3830	50	ug/l	5500	ND	69.7	65-135	3.45	20	
Surrogate 4-Bromofluorobenzene	80.0		"	100		80.0	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (2110717-BLK1)			
Bromobenzene	ND	1.0	ug/l
Bromochloromethane	ND	1.0	"
Bromodichloromethane	ND	1.0	"
Bromoform	ND	1.0	"
Bromomethane	ND	1.0	"
n-Butylbenzene	ND	1.0	"
sec-Butylbenzene	ND	1.0	"
tert-Butylbenzene	ND	1.0	"
Carbon tetrachloride	ND	0.50	"
Chlorobenzene	ND	1.0	"
Chloroethane	ND	1.0	"
Chloroform	ND	1.0	"
Chloromethane	ND	1.0	"
2-Chlorotoluene	ND	1.0	"
4-Chlorotoluene	ND	1.0	"
Dibromochloromethane	ND	1.0	"
1,2-Dibromo-3-chloropropane	ND	1.0	"
1,2-Dibromoethane (EDB)	ND	1.0	"
Dibromomethane	ND	1.0	"
1,2-Dichlorobenzene	ND	1.0	"
1,3-Dichlorobenzene	ND	1.0	"
1,4-Dichlorobenzene	ND	1.0	"
Dichlorodifluoromethane	ND	0.50	"
1,1-Dichloroethane	ND	1.0	"
1,2-Dichloroethane	ND	0.50	"
1,1-Dichloroethene	ND	1.0	"
cis-1,2-Dichloroethene	ND	1.0	"
trans-1,2-Dichloroethene	ND	1.0	"
1,2-Dichloropropane	ND	1.0	"
1,3-Dichloropropane	ND	1.0	"
2,2-Dichloropropane	ND	1.0	"
1,1-Dichloropropene	ND	1.0	"
cis-1,3-Dichloropropene	ND	0.50	"
trans-1,3-Dichloropropene	ND	0.50	"
Hexachlorobutadiene	ND	1.0	"
Isopropylbenzene	ND	1.0	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Batch 2110717 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

ND

ND

7.73

7.19

9.40

2.0

2.0

1.0

5.0

8.00

8.00

8.00

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2110717-BLK1)				Prepared & Analyzed: 11/07/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	

SunStar Laboratories, Inc.

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Di-isopropyl ether

113)

Ethyl tert-butyl ether

Methyl tert-butyl ether

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

96.6

89.9

118

Wordy Flsia

S-GC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110717 - EPA 5030 GCMS										
LCS (2110717-BS1)				Prepared	& Analyze	ed: 11/07/	12			
Chlorobenzene	21.6	1.0	ug/l	20.0		108	75-125			
1,1-Dichloroethene	18.8	1.0	"	20.0		94.0	75-125			
Trichloroethene	21.2	1.0	"	20.0		106	75-125			
Benzene	23.5	0.50	"	20.0		118	75-125			
Toluene	22.6	0.50	"	20.0		113	75-125			
Surrogate 4-Bromofluorobenzene	6.97		"	8.00		87.1	83.5-119			
Surrogate Dibromofluoromethane	8.45		"	8.00		106	81-136			
Surrogate Toluene-d8	7.34		"	8.00		91.8	88.8-117			
Matrix Spike (2110717-MS1)	So	urce: T12202	Prepared	& Analyz	ed: 11/07/	12				
Chlorobenzene	21.4	1.0	ug/l	20.0	ND	107	75-125			
1,1-Dichloroethene	18.6	1.0	"	20.0	ND	93.0	75-125			
Trichloroethene	21.1	1.0	"	20.0	ND	106	75-125			
Benzene	23.0	0.50	"	20.0	ND	115	75-125			
Toluene	22.6	0.50	"	20.0	ND	113	75-125			
Surrogate 4-Bromofluorobenzene	7.34		"	8.00		91.8	83.5-119			
Surrogate Dibromofluoromethane	7.74		"	8.00		96.8	81-136			
Surrogate Toluene-d8	7.67		"	8.00		95.9	88.8-117			
Matrix Spike Dup (2110717-MSD1)	So	urce: T12202	27-01	Prepared	& Analyze	ed: 11/07/	12			
Chlorobenzene	21.7	1.0	ug/l	20.0	ND	109	75-125	1.39	20	
1,1-Dichloroethene	19.4	1.0	"	20.0	ND	97.2	75-125	4.42	20	
Trichloroethene	21.7	1.0	"	20.0	ND	108	75-125	2.62	20	
Benzene	23.2	0.50	"	20.0	ND	116	75-125	0.909	20	
Toluene	22.7	0.50	"	20.0	ND	114	75-125	0.265	20	
Surrogate 4-Bromofluorobenzene	7.16		"	8.00		89.5	83.5-119			
Surrogate Dibromofluoromethane	7.98		"	8.00		99.8	81-136			
Surrogate Toluene-d8	7.52		"	8.00		94.0	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/09/12 16:51

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	714) 508-088					F	Date: Proje Colle Batch	ct Na	ame Fra	: ane	CEI Sos	NC(ic			Clie	ge: ent Project #: F #:	OF	0
Sample ID LL_104A_110612_01 LL_106A_110612_01 LL_104A_110612_01 LL_18_110612	Date Sampled 11-6-12 11-6-12	Time 1000 1250 1532	Sample Type GW GW Weer	XXTPHg (8015 M)	XXXVOCs (8260 B)										NOO Total # of containers		its/Preservative	20 00 10 #
Relinquished by: (signature) F. Ssic Relinquished by: (signature)	Date / T	1545	Received b	7.	- 'ı	161	12	545	Cha	in of	of cor Cust tact?	ody s	seals		2C		Notes	
Relinquished by: (signature) Sample disposal Instructions: Disposal @ \$2.0	Date / T		Received b			Date		e)	con	ditior	ound		e:	Stand	dard	2.2°		

SAMPLE RECEIVING REVIEW SHEET

BATCH # 7/22027					
Client Name: Muces Env.	Project: Ca	enco/			
Received by:	Date/Time Rec	eived: //	6.12/	15145	
Delivered by: Client SunStar Courier GSO	FedEx	Other	,		
Total number of coolers received Temp	criteria = 6°C >	0°C (no	frozen con	tainers)	
Temperature: cooler #1 2.4 °C +/- the CF (-0.2°C) =	2.2 °C correct	d temperatu	ire		
cooler #2°C +/- the CF (- 0.2°C) =	°C correct	ed temperatu	ıre		
cooler #3°C +/- the CF (- 0.2°C) =	°C correct	ed temperati	ие		
Samples outside temp. but received on ice, w/in 6 hours of fi	nal sampling.	⊠Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample		□Yes	□No*	⊠N/A	
Sample Containers Intact		⊠Yes	□No*		
Sample labels match COC ID's	,	Yes	□No*		
Total number of containers received match COC	•	Yes	□No*		
Proper containers received for analyses requested on COC		∑Yes	□No*		
Proper preservative indicated on COC/containers for analyse	s requested	Yes	□No*	□N/A	
Complete shipment received in good condition with correct t preservatives and within method specified holding times.	☑ Yes □No*				
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Rev	/iew - Initia	ils and date	84 11.	7:12
Comments:					
	<u> </u>				
			٦ .		
		: -			4 .

13 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/07/12 16:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/13/12 16:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W7_110712_01	T122033-01	Water	11/07/12 08:45	11/07/12 16:40
LL_W8_110712_01	T122033-02	Water	11/07/12 10:37	11/07/12 16:40
LL_W9_110712_01	T122033-03	Water	11/07/12 12:26	11/07/12 16:40
LL_W10_110712_01	T122033-04	Water	11/07/12 15:44	11/07/12 16:40
LL_TB_110712	T122033-05	Water	11/07/12 00:00	11/07/12 16:40

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W7_110712_01 T122033-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	ND	50	ug/l	1	2110808	11/12/12	11/13/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		95.2 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	PA Method 82601	3						
Bromobenzene	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"
Dibromomethane	ND	1.0	**	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	**	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W7_110712_01 T122033-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	ounstar La	iboratori	es, inc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloropropane	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	0.53	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	0.64	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	0.57	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W7_110712_01 T122033-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_W8_110712_01 T122033-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)	62	50	ug/l	1	2110808	11/12/12	11/13/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		100 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	ii .	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	II .	
Bromomethane	ND	1.0	"	"	"	"	"	II .	
n-Butylbenzene	ND	1.0	"	"	"	"	"	ii .	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	II .	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	II .	
Chlorobenzene	ND	1.0	"	"	"	"	"	II .	
Chloroethane	ND	1.0	"	"	"	"	"	II .	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	· ·	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_W8_110712_01 T122033-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	0.50	0.50	"	"	"	"	"	"
oluene	0.75	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W8_110712_01 T122033-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Tert-butyl alcohol	ND	10	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"			

 CFC 113)
 Surrogate: 4-Bromofluorobenzene
 94.1 %
 83.5-119
 " " " " "

 Surrogate: Dibromofluoromethane
 82.8 %
 81-136
 " " " " " "

 Surrogate: Toluene-d8
 120 %
 88.8-117
 " " " " " " S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W9_110712_01 T122033-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2110808

11/12/12

11/13/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		86.2 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260I	3							
Bromobenzene	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	**	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W9_110712_01 T122033-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	ь	unstai La	1001 atol 1	es, mc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloropropane	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_W9_110712_01 T122033-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by EPA	vietnoa 8200B								
Tert-butyl alcohol	ND	10	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
G		0668	02.5	110	"	,,	"	,,	

 CFC 113)

 Surrogate: 4-Bromofluorobenzene
 96.6 %
 83.5-119 " " " " "

 Surrogate: Dibromofluoromethane
 84.0 %
 81-136 " " " " " "

 Surrogate: Toluene-d8
 119 %
 88.8-117 " " " " " S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_W10_110712_01 T122033-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	5100	50	ug/l	1	2110808	11/12/12	11/13/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		135 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.8	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.0	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	2.3	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_W10_110712_01 T122033-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	11	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	130	1.0	"	"	"	"	"	"	
n-Propylbenzene	14	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Гetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	4.2	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	27	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	930	0.50	"	"	"	"	"	"	E-
Toluene	7.9	0.50	"	"	"	"	"	"	
Ethylbenzene	120	0.50	"	"	"	"	"	"	
m,p-Xylene	65	1.0	"	"	"	"	"	"	
o-Xylene	2.9	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	65	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_W10_110712_01 T122033-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	by EPA	Method 8260B
v oratric	Organic	Compounds	UVLIA	MICHIOU OZOOD

· • • • • • • • • • • • • • • • • • • •									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		78.5 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		106 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_TB_110712 T122033-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

LL_TB_110712 T122033-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	SunStar La	iboratori	es, inc.				
Volatile Organic Compounds by E								
eis-1,3-Dichloropropene	ND	0.50	ug/l	1	2110809	11/08/12	11/08/12	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Fert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

LL_TB_110712 T122033-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1 2	2110809	11/08/12	11/08/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		95.5 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		84.1 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		114 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110808 - EPA 5030 GC										
Blank (2110808-BLK1)				Prepared:	11/12/12	Analyzed	l: 11/13/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	85.3		"	100		85.3	65-135			
LCS (2110808-BS1)				Prepared:	11/12/12	Analyzed	l: 11/13/12			
C6-C12 (GRO)	4570	50	ug/l	5500		83.1	75-125			
Surrogate 4-Bromofluorobenzene	134		"	100		134	65-135			
LCS Dup (2110808-BSD1)				Prepared:	11/12/12	Analyzed	l: 11/13/12			
C6-C12 (GRO)	5020	50	ug/l	5500		91.3	75-125	9.45	20	
Surrogate 4-Bromofluorobenzene	132		"	100		132	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2110809 - EPA :	5030 GCMS
-----------------------	-----------

Blank (2110809-BLK1)				Prepared & Analyzed: 11/08/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2110809 - EPA 5030 GCMS										
Blank (2110809-BLK1)				Prepared	& Analyzo	ed: 11/08/	12			

Blank (2110809-BLK1)				Prepared & Analyzed: 11/08/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	
Surrogate 4-Bromofluorobenzene	7.42		"	8.00 92.8 83.5-119
Surrogate Dibromofluoromethane	6.06		"	8.00 75.8 81-136 S-GC
Surrogate Toluene-d8	9.20		"	8.00 115 88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/13/12 16:07

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2110809 - EPA 5030 GCMS	- <u>-</u>	-								
LCS (2110809-BS1)				Prepared	& Analyze	ed: 11/08/	12			
Chlorobenzene	24.2	1.0	ug/l	20.0		121	75-125			
1,1-Dichloroethene	23.4	1.0	"	20.0		117	75-125			
Trichloroethene	24.2	1.0	"	20.0		121	75-125			
Benzene	23.6	0.50	"	20.0		118	75-125			
Toluene	23.2	0.50	"	20.0		116	75-125			
Surrogate 4-Bromofluorobenzene	8.12		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.49		"	8.00		93.6	81-136			
Surrogate Toluene-d8	9.14		"	8.00		114	88.8-117			
Matrix Spike (2110809-MS1)	Sor	urce: T12203	3-01	Prepared	& Analyze	ed: 11/08/	' 12			
Chlorobenzene	24.6	1.0	ug/l	20.0	ND	123	75-125			
1,1-Dichloroethene	24.1	1.0	"	20.0	ND	120	75-125			
Trichloroethene	24.8	1.0	"	20.0	ND	124	75-125			
Benzene	24.4	0.50	"	20.0	0.530	119	75-125			
Toluene	22.8	0.50	"	20.0	0.380	112	75-125			
Surrogate 4-Bromofluorobenzene	8.26		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.57		"	8.00		94.6	81-136			
Surrogate Toluene-d8	9.01		"	8.00		113	88.8-117			
Matrix Spike Dup (2110809-MSD1)	Sor	urce: T12203	3-01	Prepared	& Analyze	ed: 11/08/	'12			
Chlorobenzene	24.2	1.0	ug/l	20.0	ND	121	75-125	1.76	20	
1,1-Dichloroethene	23.8	1.0	"	20.0	ND	119	75-125	1.04	20	
Trichloroethene	24.4	1.0	"	20.0	ND	122	75-125	1.34	20	
Benzene	24.4	0.50	"	20.0	0.530	119	75-125	0.0411	20	
Toluene	23.5	0.50	"	20.0	0.380	116	75-125	2.72	20	
Surrogate 4-Bromofluorobenzene	8.35		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	7.29		"	8.00		91.1	81-136			
Surrogate Toluene-d8	9.08		"	8.00		114	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flaco

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/13/12 16:07

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though

it was above calibration range.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsias

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-088					F	Proje Colle	ct Na ctor:	ame Fr	: ane	CEN Sos	ICC ic)			ge: { nt Project # = #:		001-300	
Sample ID LL_WF_[107[2_0] LL_W8_[107[2_0] LL_W9_[107[2_0] LL_W[0_[107[2_0] LL_TB_1107[2	Date Sampled 1:7:12 1:7:12 1:7:12	Time 0845 1034 1246 1544	Sample Type GW GW GW Water	(8015	XXXXVOCs (8260 B)										NOON Total # of containers	Comm	ents/Prese	rvative	20 20 30 60 70 70 70 70 70 70 70 70 70 70 70 70 70
Relinquished by: (signa)ure)	Date / T U.F./Z Date / T	ime	Received b	oy: (S	ر Bign /	Dáte	<mark>2/(2</mark> e/Tim	1640 ne)	Cha Sea Red	tal # cain of als interceived	Custo	ody s Y/N/I	eals		26 V	2.2	Notes		
Relinquished by: (signature)	Date / I	III)6	Received	υy: (S	sign /	Date	e/Im	ie)	Tui	n arc	ound	tim	 e:	Stand					

Pickup ____

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH #	233			•	
Client Name: Mure	Project: C	ENCO			
Received by:	Date/Time Re	ceived:	1.7.12	16:40	
Delivered by: Clien	t SunStar Courier GSO FedEx	Other			
Total number of coolers re	ceived Temp criteria = 6°C	> 0°C (no	<u>frozen</u> con	ntainers)	
Temperature: cooler #1	$^{\circ}$ C +/- the CF (- 0.2°C) = $^{\circ}$ C correction	cted temperati	ıre		
cooler #2	°C +/- the CF (- 0.2°C) =°C correc	cted temperati	ıre		
cooler #3	°C +/- the CF (-0.2°C) =°C corre	cted temperati	ıre		
Samples outside temp. but	received on ice, w/in 6 hours of final sampling.	 Yes	□No*	□N/A	
Custody Seals Intact on Co	poler/Sample	∐Yes	□No*	⊠N/A	
Sample Containers Intact		 Yes Y es	□No*		
Sample labels match COC	ID's	≥Yes	□No*		
Total number of container	s received match COC	≥Yes	□No*		
Proper containers received	for analyses requested on COC	Yes	□No*		
Proper preservative indicate	ted on COC/containers for analyses requested	₹Yes	□No*	□N/A	
	ed in good condition with correct temperatures, contented specified holding times. Yes No	•	ibels, volu	mes	
* Complete Non-Conformance	ce Receiving Sheet if checked Cooler/Sample Re	eview - Initia	ıls and date	86 11.8	12
Comments:					
					-
					-

15 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/09/12 15:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/15/12 15:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W11_110812_01	T122063-01	Water	11/08/12 12:38	11/09/12 15:30
LL_W12_110812_01	T122063-02	Water	11/08/12 16:00	11/09/12 15:30
LL_TB_110912	T122063-03	Water	11/09/12 00:00	11/09/12 15:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W11_110812_01 T122063-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	340	50	ug/l	1	2111227	11/12/12	11/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		121 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260I	3						
Bromobenzene	ND	1.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.7	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W11_110812_01 T122063-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by I								
,2-Dichloropropane	ND	1.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	2.5	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	63	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	5.0	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	23	0.50	"	"	"	"	"	"
Гoluene	3.1	0.50	"	"	"	"	"	"
Ethylbenzene	1.6	0.50	"	"	"	"	"	"
n,p-Xylene	23	1.0	"	"	"	"	"	"
o-Xylene	2.0	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W11_110812_01 T122063-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Tert-butyl alcohol	ND	10	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	83.5-	119	"	"	"	"	_
Surrogate: Dibromofluoromethane		91.2 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		119 %	88.8-	117	"	"	"	"	S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W12_110812_01 T122063-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2111227

11/12/12

11/15/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by EPA	A 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		102 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	II .	
Bromoform	ND	1.0	"	"	"	"	"	II .	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	II .	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	II .	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	II .	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	II .	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	II .	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W12_110812_01 T122063-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_W12_110812_01 T122063-02 (Water)

Analyte	Result	Limit	Units	Dilution ries, Inc.	Batch	Prepared	Analyzed	Method	Notes
		Reporting							

Volatile Organic Compounds by EPA Method 8260B

Volatile Organic Compounds by Et A Wethou 8200B												
Tert-butyl alcohol	ND	10	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260B				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"				
(CFC 113)												
Surrogate: 4-Bromofluorobenzene		93.4 %	83.5-	119	"	"	"	"				
Surrogate: Dibromofluoromethane		97.0 %	81-1	36	"	"	"	"				
Surrogate: Toluene-d8		112 %	88.8-	117	"	"	"	"				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_TB_110912 T122063-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/15/12 15:57

LL_TB_110912 T122063-03 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

eis-1,3-Dichloropropene	ND	0.50	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

LL_TB_110912 T122063-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

· · · · · · · · · · · · · · · · · · ·									
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2111225	11/12/12	11/14/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		93.5 %	83.5-119	9	"	"	"	"	
Surrogate: Dibromofluoromethane		91.9 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		115 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/15/12 15:57

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2111227 - EPA 5030 GC										
Blank (2111227-BLK1)				Prepared:	11/12/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	94.9		"	100		94.9	65-135			
LCS (2111227-BS1)				Prepared:	11/12/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	4980	50	ug/l	5500		90.5	75-125			
Surrogate 4-Bromofluorobenzene	135		"	100		135	65-135			
Matrix Spike (2111227-MS1)	Sou	rce: T12206	3-01	Prepared:	11/12/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	4860	50	ug/l	5500	343	82.1	65-135			
Surrogate 4-Bromofluorobenzene	127		"	100		127	65-135			
Matrix Spike Dup (2111227-MSD1)	Sou	rce: T12206	3-01	Prepared:	11/12/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	4790	50	ug/l	5500	343	80.8	65-135	1.45	20	
Surrogate 4-Bromofluorobenzene	132		"	100		132	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	2111225 -	EPA	5030	GCMS
Dutti		11111	2020	CIVID

Blank (2111225-BLK1)				Prepared: 11/12/12 Analyzed: 11/14/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/15/12 15:57

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

			2 -11 00	20101	2.00010	· sreec			 11000
Batch 2111225 - EPA 5030 GCMS									
Blank (2111225-BLK1)				Prepared	: 11/12/12	Analyze	d: 11/14/12	,	
p-Isopropyltoluene	ND	1.0	ug/l						
Methylene chloride	ND	1.0	"						
Naphthalene	ND	1.0	"						
n-Propylbenzene	ND	1.0	"						
Styrene	ND	1.0	"						
1,1,2,2-Tetrachloroethane	ND	1.0	"						
1,1,1,2-Tetrachloroethane	ND	1.0	"						
Tetrachloroethene	ND	1.0	"						
1,2,3-Trichlorobenzene	ND	1.0	"						
1,2,4-Trichlorobenzene	ND	1.0	"						
1,1,2-Trichloroethane	ND	1.0	"						
1,1,1-Trichloroethane	ND	1.0	"						
Trichloroethene	ND	1.0	"						
Trichlorofluoromethane	ND	1.0	"						
1,2,3-Trichloropropane	ND	1.0	"						
1,3,5-Trimethylbenzene	ND	1.0	"						
1,2,4-Trimethylbenzene	ND	1.0	"						
Vinyl chloride	ND	1.0	"						
Benzene	ND	0.50	"						
Toluene	ND	0.50	"						
Ethylbenzene	ND	0.50	"						
m,p-Xylene	ND	1.0	"						
o-Xylene	ND	0.50	"						
Tert-amyl methyl ether	ND	2.0	"						
Tert-butyl alcohol	ND	10	"						
Di-isopropyl ether	ND	2.0	"						
Ethyl tert-butyl ether	ND	2.0	"						
Methyl tert-butyl ether	ND	1.0	"						
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"						
Surrogate 4-Bromofluorobenzene	7.37		"	8.00		92.1	83.5-119		
Surrogate Dibromofluoromethane	7.71		"	8.00		96.4	81-136		
Surrogate Toluene-d8	9.06		"	8.00		113	88.8-117		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flias

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/15/12 15:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2111225 - EPA 5030 GCMS										
LCS (2111225-BS1)				Prepared:	11/12/12	Analyze	d: 11/14/12			
Chlorobenzene	21.4	1.0	ug/l	20.0		107	75-125			
1,1-Dichloroethene	17.6	1.0	"	20.0		88.0	75-125			
Trichloroethene	20.2	1.0	"	20.0		101	75-125			
Benzene	23.7	0.50	"	20.0		119	75-125			
Toluene	21.7	0.50	"	20.0		109	75-125			
Surrogate 4-Bromofluorobenzene	6.86		"	8.00		85.8	83.5-119			
Surrogate Dibromofluoromethane	8.33		"	8.00		104	81-136			
Surrogate Toluene-d8	7.33		"	8.00		91.6	88.8-117			
Matrix Spike (2111225-MS1)	Sou	rce: T12206	63-01	Prepared:	11/12/12	Analyze	d: 11/14/12			
Chlorobenzene	21.5	1.0	ug/l	20.0	ND	108	75-125			
1,1-Dichloroethene	16.5	1.0	"	20.0	ND	82.6	75-125			
Trichloroethene	21.4	1.0	"	20.0	ND	107	75-125			
Benzene	48.9	0.50	"	20.0	22.7	131	75-125			QM-07
Toluene	27.2	0.50	"	20.0	3.09	120	75-125			
Surrogate 4-Bromofluorobenzene	7.14		"	8.00		89.2	83.5-119			
Surrogate Dibromofluoromethane	8.66		"	8.00		108	81-136			
Surrogate Toluene-d8	7.94		"	8.00		99.2	88.8-117			
Matrix Spike Dup (2111225-MSD1)	Sou	rce: T12206	53-01	Prepared:	11/12/12	Analyze	d: 11/14/12			
Chlorobenzene	22.0	1.0	ug/l	20.0	ND	110	75-125	2.21	20	
1,1-Dichloroethene	17.8	1.0	"	20.0	ND	89.1	75-125	7.63	20	
Trichloroethene	20.2	1.0	"	20.0	ND	101	75-125	5.68	20	
Benzene	45.8	0.50	"	20.0	22.7	116	75-125	6.42	20	
Toluene	25.0	0.50	"	20.0	3.09	109	75-125	8.44	20	
Surrogate 4-Bromofluorobenzene	7.03		"	8.00		87.9	83.5-119			
Surrogate Dibromofluoromethane	8.48		"	8.00		106	81-136			
Surrogate Toluene-d8	7.18		"	8.00		89.8	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/15/12 15:57

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

SunStar Laboratories, Inc.

Chain of Custody Record

25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL INC.

Sample disposal Instructions: Disposal @ \$2.00 each

Address: 2640 Walnut Ave, Unit F

Phone: (714) 508-0800 Fax: (714) 508-0880

Project Manager: Jeremy Squire (714) 604-5836

Project Name: CENCO

Collector: Frane Sosic

Client Project #: 1003-001-300

Batch #: T(22 0 6 3 EDF#:

	THE REST OF THE SHARE FROM THE WAY OF THE PERSON OF THE PE		and the second s																
				(8015 M)	(8260 B)												containers		#(
Sample ID	Date Sampled	Time	Sample Type	0													Total # of co	Comments/Preservative	Laboratory ID
U_WIL 110812_01	11.8.12	1238	GW	X	X						_						6		02
L_W12_110812_01 LL_TB_110912	11.0.15	, acc	Water		文												2		0
									_										-
			<u> </u>																+
Relinquished by: (signature)	Date / T	ime /5 3 0	Received to				e/Ti		30	Tota Cha		of co Cust			3		14	Notes	
Relinquished by (signature)	Date / T	ime	Received b	oy: (S	Sign /	Dat	e / T	ime)		Rec	eive		d	NA		~(
Relinquished by: (signature)	Date / T	ime	Received b	oy: (S	Sign /	Dat	e/T	ime)		cond	dition	/colc	l 			<u>Y</u>	<u> </u>	u.2	
										Tur	n ar	ounc	i tim	ıe:		Stand	ard		

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH #	Anna de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de
Client Name: Munch	Project: Conco
Received by:	Date/Time Received: 11.9.12 / 15.30
Delivered by: Client Suns	Star Courier GSO FedEx Other
Total number of coolers received	Temp criteria = 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 _ 4.4 _ °C +/	- the CF (-0.2°C) = <u>4.2</u> °C corrected temperature
cooler #2°C +/	- the CF (- 0.2°C) =°C corrected temperature
cooler #3°C +/	- the CF (-0.2°C) =°C corrected temperature
Samples outside temp. but received on	ice, w/in 6 hours of final sampling. Yes \[\]No* \[\]N/A
Custody Seals Intact on Cooler/Sampl	e □Yes □No* ☑N/A
Sample Containers Intact	₹Yes □No*
Sample labels match COC ID's	Yes \[\]No*
Total number of containers received m	natch COC Yes \(\sum No*
Proper containers received for analyse	s requested on COC Yes No*
Proper preservative indicated on COC	/containers for analyses requested ☐Yes ☐No* ☐N/A
Complete shipment received in good of preservatives and within method speci	ondition with correct temperatures, containers, labels, volumes fied holding times. Yes No*
* Complete Non-Conformance Receiving	Sheet if checked Cooler/Sample Review - Initials and date \$2 11.10.12
Comments:	
<u>:</u>	

19 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/13/12 16:22. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/19/12 15:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_EW1_111312_01	T122090-01	Water	11/13/12 12:00	11/13/12 16:22
LL_701_111312_01	T122090-02	Water	11/13/12 14:27	11/13/12 16:22
LL_702_111312_01	T122090-03	Water	11/13/12 16:06	11/13/12 16:22
LL_TB_111312	T122090-04	Water	11/13/12 00:00	11/13/12 16:22

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_EW1_111312_01 T122090-01 (Water)

			Reporting							
P	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	2900	50	ug/l	1	2111415	11/14/12	11/15/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		563 %	65-1.	35	"	"	"	"	S-0-
Volatile Organic Compounds by E	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	10	1.0	"	"	"	"	"	"	
sec-Butylbenzene	12	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.5	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	,,	"	,,	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/19/12 15:53

LL_EW1_111312_01 T122090-01 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstar Laboratories, Inc.											
Volatile Organic Compounds by	EPA Method 8260B											
1,2-Dichloropropane	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B				
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	11				
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	11				
Isopropylbenzene	22	1.0	"	"	"	"	"	11				
p-Isopropyltoluene	1.1	1.0	"	"	"	"	"	"				
Methylene chloride	ND	1.0	"	"	"	"	"	"				
Naphthalene	120	1.0	"	"	"	"	"	"				
n-Propylbenzene	27	1.0	"	"	"	"	"	"				
Styrene	ND	1.0	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"				
Tetrachloroethene	ND	1.0	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"				
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"				
Trichloroethene	ND	1.0	"	"	"	"	"	"				
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	1.3	1.0	"	"	"	"	"	"				
Vinyl chloride	ND	1.0	"	"	"	"	"	"				
Benzene	ND	0.50	"	"	"	"	"	"				
Toluene	ND	0.50	"	"	"	"	"	"				
Ethylbenzene	5.8	0.50	"	"	"	"	"	"				
m,p-Xylene	1.4	1.0	"	"	"	"	"	"				
o-Xylene	ND	0.50	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_EW1_111312_01 T122090-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	SunStar La	iboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		89.4 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		109 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/19/12 15:53

LL_701_111312_01 T122090-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	300	50	ug/l	1	2111415	11/14/12	11/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EP	A Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	5.1	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	18	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	3.1	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_701_111312_01 T122090-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	boratori	es, Inc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,3-Dichloropropane	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	5.9	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	31	1.0	"	"	"	"	"	"
Benzene	0.95	0.50	"	"	"	"	"	"
Гoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11/16/12

EPA 8260B

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_701_111312_01 T122090-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

voiatile Organic Compounds by El	PA Miethod 8200B						
Di-isopropyl ether	ND	2.0	ug/l	1	2111417	11/14/12	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	

Methyl tert-butyl ether ND 1.0 1,1,2-trichloro-1,2,2-trifluoroethane 5.0 ND (CFC 113) Surrogate: 4-Bromofluorobenzene 92.4 % 83.5-119 Surrogate: Dibromofluoromethane88.6 % 81-136 108 % 88.8-117 Surrogate: Toluene-d8

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/19/12 15:53

LL_702_111312_01 T122090-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	65	50	ug/l	1	2111415	11/14/12	11/15/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		123 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.2	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.0	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_702_111312_01 T122090-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by E	PA Method 8260B	.						
1,3-Dichloropropane	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	4.4	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.5	1.0	"	"	"	"	"	"
n-Propylbenzene	4.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	17	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_702_111312_01 T122090-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B			
Di isanganyi othar	ND	2.0	a/1	

Di-isopropyl ether	ND	2.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		86.9 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_TB_111312 T122090-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_TB_111312 T122090-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260E
ns-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
ichloroethene	ND	1.0	"	"	"	"	"	"
ichlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

LL_TB_111312 T122090-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2111417	11/14/12	11/16/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		86.6 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		90.4 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2111415 - EPA 5030 GC										
Blank (2111415-BLK1)				Prepared:	11/14/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	97.1		"	100		97.1	65-135			
LCS (2111415-BS1)				Prepared:	11/14/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	4160	50	ug/l	5500		75.7	75-125			
Surrogate 4-Bromofluorobenzene	135		"	100		135	65-135			
Matrix Spike (2111415-MS1)	Sou	rce: T12209	0-02	Prepared:	11/14/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	3750	50	ug/l	5500	300	62.7	65-135			QM-05
Surrogate 4-Bromofluorobenzene	135		"	100		135	65-135			
Matrix Spike Dup (2111415-MSD1)	Sou	rce: T12209	0-02	Prepared:	11/14/12	Analyzed	l: 11/15/12			
C6-C12 (GRO)	3780	50	ug/l	5500	300	63.2	65-135	0.799	20	QM-05
Surrogate 4-Bromofluorobenzene	135		"	100		135	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wandy Flsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/19/12 15:53

Reporting

Limit

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.50

0.50

1.0 1.0

0.50

0.50

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2111417-BLK1)				Prepared: 11/14/12 Analyzed: 11/16/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	

SunStar Laboratories, Inc.

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Limits

RPD

Batch 2111417 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

ND

7.06

7.06

8.56

2.0

1.0

5.0

8.00

8.00

8.00

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/19/12 15:53

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2111417-BLK1)				Prepared: 11/14/12 Analyzed: 11/16/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	

SunStar Laboratories, Inc.

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Ethyl tert-butyl ether

113)

Methyl tert-butyl ether

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

88.2

88.2

107

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Prepared: 11/14/12 Analyzed: 11/16/12	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chlorobenzene	Batch 2111417 - EPA 5030 GCMS										
1,1-Dichloroethene	LCS (2111417-BS1)				Prepared:	11/14/12	Analyze	d: 11/16/12			
Trichlorochene	Chlorobenzene	18.0	1.0	ug/l	20.0		90.0	75-125			
Renzene 20.2 0.50 " 20.0 101 75-125	1,1-Dichloroethene	21.0	1.0	"	20.0		105	75-125			
Toluene	Trichloroethene	17.9	1.0	"	20.0		89.6	75-125			
Surrogate A-Bromofluorobenzene 7.71 " 8.00 96.4 83.5-119 Surrogate Dibromofluoromethane 7.67 " 8.00 95.9 81-136 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 100 75-125 Surrogate Toluene-d8 7.70 1.0 " 20.0 5.13 110 75-125 Surrogate Toluene-d8 7.70 1.0 " 20.0 5.13 110 75-125 Surrogate Toluene 22.8 0.50 " 20.0 0.950 109 75-125 Surrogate 4-Bromofluorobenzene 19.4 0.50 " 20.0 ND 96.8 75-125 Surrogate 4-Bromofluorobenzene 8.05 " 8.00 101 83.5-119 Surrogate Toluene-d8 8.12 " 8.00 96.6 81-136 Surrogate Toluene-d8 8.12 " 8.00 96.6 81-136 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Surrogate Toluene-d8 8.12 " 8.00 100 98.4 75-125 2.06 20 1.1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 2.99 20 Surrogate Toluene 19.0 0.50 " 20.0 0.950 106 75-125 2.99 20 Surrogate 4-Bromofluorobenzene 19.0 0.50 " 20.0 0.950 106 75-125 2.99 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate 4-Bromofluorobenzene 7.43 " 8.00 99.8 83.5-119 Surrogate 4-Bromofluorobe	Benzene	20.2	0.50	"	20.0		101	75-125			
Surrogate A-Bromofluoromethane 7.77 8.00 95.9 81-136	Toluene	17.5	0.50	"	20.0		87.6	75-125			
Matrix Spike (2111417-MS1) Source: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12	Surrogate 4-Bromofluorobenzene	7.71		"	8.00		96.4	83.5-119			
Matrix Spike (2111417-MS1) Source: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12	Surrogate Dibromofluoromethane	7.67		"	8.00		95.9	81-136			
Chlorobenzene 20.1 1.0 ug/l 20.0 ND 100 75-125 1.1-Dichloroethene 27.0 1.0 " 20.0 5.13 110 75-125 1.1-Dichloroethene 23.2 1.0 " 20.0 5.89 86.6 75-125 1.1-Dichloroethene 23.2 1.0 " 20.0 0.950 109 75-125 1.1-Dichloroethene 19.4 0.50 " 20.0 ND 96.8 75-125 1.1-Dichloroethene 19.4 0.50 " 20.0 ND 96.8 75-125 1.1-Dichloroethene 20.0 ND 20.0 ND 20.0 ND 20.0 20.0 ND 20.0 20.0 ND 20.0 20.0 20.0 ND 20.0	Surrogate Toluene-d8	8.12		"	8.00		102	88.8-117			
1,1-Dichloroethene 27.0 1.0 " 20.0 5.13 110 75-125 Trichloroethene 23.2 1.0 " 20.0 5.89 86.6 75-125 Benzene 22.8 0.50 " 20.0 0.950 109 75-125 Toluene 19.4 0.50 " 20.0 ND 96.8 75-125 Surrogate 4-Bromofluorobenzene 8.05 " 8.00 101 83.5-119 Surrogate Dibromofluoromethane 7.73 " 8.00 96.6 81-136 Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Matrix Spike Dup (2111417-MSD1) Source: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12 Chlorobenzene 19.7 1.0 ug/l 20.0 ND 98.4 75-125 2.06 20 1,1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 99.8 83.5-119	Matrix Spike (2111417-MS1)	So	urce: T12209	0-02	Prepared:	11/14/12	Analyze	d: 11/16/12			
Trichloroethene	Chlorobenzene	20.1	1.0	ug/l	20.0	ND	100	75-125			
Surrogate 4-Bromofluorobenzene 22.8 0.50 " 20.0 0.950 109 75-125	1,1-Dichloroethene	27.0	1.0	"	20.0	5.13	110	75-125			
Toluene	Trichloroethene	23.2	1.0	"	20.0	5.89	86.6	75-125			
Surrogate 4-Bromofluorobenzene 8.05 " 8.00 101 83.5-119	Benzene	22.8	0.50	"	20.0	0.950	109	75-125			
Surrogate 4-Bromofluoromethane Surrogate Dibromofluoromethane Surrogate Dibromofluoromethane Surrogate Toluene-d8 Surrogate Toluene-d8 Surce: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12	Toluene	19.4	0.50	"	20.0	ND	96.8	75-125			
Surrogate Toluene-d8 8.12 " 8.00 102 88.8-117 Matrix Spike Dup (2111417-MSD1) Source: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12 Chlorobenzene 19.7 1.0 ug/l 20.0 ND 98.4 75-125 2.06 20 1,1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Surrogate 4-Bromofluorobenzene	8.05		"	8.00		101	83.5-119			
Matrix Spike Dup (2111417-MSD1) Source: T122090-02 Prepared: 11/14/12 Analyzed: 11/16/12 Chlorobenzene 19.7 1.0 ug/l 20.0 ND 98.4 75-125 2.06 20 1,1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Surrogate Dibromofluoromethane	7.73		"	8.00		96.6	81-136			
Chlorobenzene 19.7 1.0 ug/l 20.0 ND 98.4 75-125 2.06 20 1,1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Surrogate Toluene-d8	8.12		"	8.00		102	88.8-117			
1,1-Dichloroethene 26.5 1.0 " 20.0 5.13 107 75-125 1.87 20 Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Matrix Spike Dup (2111417-MSD1)	So	urce: T12209	0-02	Prepared:	11/14/12	Analyze	d: 11/16/12			
Trichloroethene 23.0 1.0 " 20.0 5.89 85.4 75-125 1.13 20 Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Chlorobenzene	19.7	1.0	ug/l	20.0	ND	98.4	75-125	2.06	20	
Benzene 22.2 0.50 " 20.0 0.950 106 75-125 2.93 20 Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.09 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	1,1-Dichloroethene	26.5	1.0	"	20.0	5.13	107	75-125	1.87	20	
Toluene 19.0 0.50 " 20.0 ND 94.8 75-125 2.99 20 Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Trichloroethene	23.0	1.0	"	20.0	5.89	85.4	75-125	1.13	20	
Surrogate 4-Bromofluorobenzene 7.98 " 8.00 99.8 83.5-119 Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Benzene	22.2	0.50	"	20.0	0.950	106	75-125	2.93	20	
Surrogate Dibromofluoromethane 7.43 " 8.00 92.9 81-136	Toluene	19.0	0.50	"	20.0	ND	94.8	75-125	2.09	20	
	Surrogate 4-Bromofluorobenzene	7.98		"	8.00		99.8	83.5-119			
Surrogate Toluene-d8 8.16 " 8.00 102 88.8-117	Surrogate Dibromofluoromethane	7.43		"	8.00		92.9	81-136			
	Surrogate Toluene-d8	8.16		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/19/12 15:53

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: UREX Address: 15345 Bar Phone: (714) 508-080 Project Manager:	ranca Pk	wy , Un Fax: (7)	it K-10 14) 508-	1 Irvine, 0880	C-A - -		C	oate:_ rojec collec atch	t Nai	me:	C	E	MC.				nt Pro			; <u> </u>		၁
Sample ID LL_EWI_II3I2_01 LL_FOI_II3I2_01 LL_TOZ_II3I2_01 LL_TB_III3I2	Date Samplec 13.20 2 15.20 2 15.20 2	1200	4m	Container Type 40 mL VOA 40 mL VOA	8560	XXXX8560 + 0x4		927.0 8021 BTEX	X	8015M (dlesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				ROOP Laboratory ID#		Comm	ents/Pr	eservativ	'e	NONG Total # of containers
Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Date / T Date / T	ime	Received I	by: (signature) by: (signature) by: (signature)		11	Date /	12 Time	J622	R		f Cus Se ved g	stody eals in	sea ntac	ls Y/ t? Y/ dition	J/A	1.8	•	No	tes		

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/22090					
Client Name: Muken	Project:	Cenco			
Received by:	Date/Time Re	eceived:	(13.12		
Delivered by: Client SunStar Courier GSO	☐ FedEx	Other			
Total number of coolers received Temp	criteria = 6°C	> 0°C (no	<u>frozen</u> cor	ıtainers)	
Temperature: cooler #1 $\underline{2.0}$ °C +/- the CF (- 0.2°C) =	/. C correc	cted temperatu	ire .		
cooler #2°C +/- the CF (- 0.2°C) =	°C corre	cted temperati	ıre		
cooler #3°C +/- the CF (- 0.2°C) =	°C corre	cted temperati	ıre		
Samples outside temp. but received on ice, w/in 6 hours of fi	nal sampling.	₹Yes	□No*	□N/A	•
Custody Seals Intact on Cooler/Sample		Yes	□No*	≥N/A	•
Sample Containers Intact		Yes	□No*		
Sample labels match COC ID's		∀Yes	□No*		
Total number of containers received match COC		⊠Yes	□No*		
Proper containers received for analyses requested on COC		Yes	□No*		
Proper preservative indicated on COC/containers for analyse	s requested	⊠Yes	□No*	□N/A	
Complete shipment received in good condition with correct to preservatives and within method specified holding times.			abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample R	eview - Initi	als and date	SLA	4.14.12
Comments:					
		· · · · · · · · · · · · · · · · · · ·			- 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13

28 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/15/12 17:07. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/28/12 13:25

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_703_111412_01	T122120-01	Water	11/14/12 09:24	11/15/12 17:07
LL_704_111412_01	T122120-02	Water	11/14/12 13:33	11/15/12 17:07
LL_704_111412_02	T122120-03	Water	11/14/12 14:00	11/15/12 17:07
LL_705_111412_01	T122120-04	Water	11/14/12 16:20	11/15/12 17:07
LL_705_111412_02	T122120-05	Water	11/14/12 16:35	11/15/12 17:07
LL_706_111512_01	T122120-06	Water	11/15/12 13:34	11/15/12 17:07
LL_706_111512_02	T122120-07	Water	11/15/12 14:16	11/15/12 17:07
LL_707_111512_01	T122120-08	Water	11/15/12 16:00	11/15/12 17:07
LL_TB_111512	T122120-09	Water	11/15/12 00:00	11/15/12 17:07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_703_111412_01 T122120-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	280	50	ug/l	1	2111610	11/16/12	11/19/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		132 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EP	A Method 82601	В						
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	2.5	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	14	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_703_111412_01 T122120-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.										
Volatile Organic Compounds by l	EPA Method 8260B									
1,2-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B		
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
sopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
etrachloroethene	ND	1.0	"	"	"	"	"	"		
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
richloroethene	ND	1.0	"	"	"	"	"	"		
richlorofluoromethane	ND	1.0	"	"	"	"	"	"		
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	9.5	1.0	"	"	"	"	"	"		
Benzene	4.1	0.50	"	"	"	"	"	"		
oluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
n,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_703_111412_01 T122120-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA								
Tert-butyl alcohol	ND	10	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"

 Methyl tert-butyl ether
 ND
 1.0
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "</

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_704_111412_01 T122120-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	るひょうし

C6-C12 (GRO)	8700	250	ug/l	5	2111610	11/16/12	11/19/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	22	1.0	"	"	"	"	"	"	
sec-Butylbenzene	16	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.5	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	2.1	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	27	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_704_111412_01 T122120-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	120	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	18	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	150	1.0	"	"	"	"	"	"	E-1
n-Propylbenzene	120	50	"	50	"	"	"	"	
Styrene	ND	1.0	"	1	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	2.1	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	430	50	"	50	"	"	"	"	
1,2,4-Trimethylbenzene	1000	50	"	"	"	"	"	"	
Vinyl chloride	2.2	1.0	"	1	"	"	"	"	
Benzene	2200	25	"	50	"	"	"	"	
Toluene	150	0.50	"	1	"	"	"	"	
Ethylbenzene	1200	25	"	50	"	"	"	"	
m,p-Xylene	1700	50	"	"	"	"	"	"	
o-Xylene	170	0.50	"	1	"	"	"	"	E-1
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	60	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_704_111412_01 T122120-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile ()roanic	Compounds	hy EPA	Method 8260B	
v oraune C	71 gaine	Compounds	DVLIA	Michiga 0200D	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Methyl tert-butyl ether	610	50	"	50	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		78.5 %	81-1	36	"	"	"	"	S- GC
Surrogate: Toluene-d8		106 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_704_111412_02 T122120-03 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	14000	500	ug/l	10	2111610	11/16/12	11/19/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA M	ethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	23	1.0	"	"	"	"	"	"
sec-Butylbenzene	18	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.7	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	2.1	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	18	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	m .
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
	ND	1.0	"		,,			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_704_111412_02 T122120-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	, i	Sunstai La	iboratori	ies, iiic.				
Volatile Organic Compounds by	EPA Method 8260B	3						
,3-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260E
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	120	1.0	"	"	"	"	"	"
p-Isopropyltoluene	19	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	100	50	"	50	"	"	"	"
-Propylbenzene	140	50	"	"	"	"	"	"
Styrene	ND	1.0	"	1	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	2.3	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	440	50	"	50	"	"	"	"
2,4-Trimethylbenzene	1100	50	"	"	"	"	"	"
inyl chloride	2.4	1.0	"	1	"	"	"	"
enzene	1800	25	"	50	"	"	"	"
oluene	120	25	"	"	"	"	"	"
thylbenzene	1200	25	"	"	"	"	"	"
,p-Xylene	1500	50	"	"	"	"	"	"
-Xylene	150	25	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	1	"	"	"	"
Tert-butyl alcohol	43	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_704_111412_02 T122120-03 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	_
Methyl tert-butyl ether	260	50	"	50	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		74.2 %	81-1	136	"	"	"	"	S- GC
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

100

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_705_111412_01 T122120-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2111610

11/16/12

11/19/12

EPA 8015C

50

Purgeable Petroleum Hydrocarbons by EPA 80150

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		118 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EI	A Method 8260E	3							
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	2.3	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	9.2	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_705_111412_01 T122120-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	ĸ.	ounstal La	idoi atoi i	es, mc.				
Volatile Organic Compounds by I	EPA Method 8260B	3						
1,3-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.6	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	22	1.0	"	"	"	"	"	"
n-Propylbenzene	1.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	**	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	3.2	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	9.7	1.0	**	"	"	"	"	"
Vinyl chloride	3.6	1.0	**	"	"	"	"	"
Benzene	5.1	0.50	"	"	"	"	"	"
Гoluene	0.56	0.50	"	"	"	"	"	"
Ethylbenzene	7.9	0.50	"	"	"	"	"	"
m,p-Xylene	9.9	1.0	"	"	"	"	"	"
o-Xylene	0.94	0.50	"	"	"	"	"	"
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Геrt-butyl alcohol	47	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_705_111412_01 T122120-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

, see 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Methyl tert-butyl ether	2.1	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.9 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		84.0 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_705_111412_02 T122120-05 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)	100	50	ug/l	1	2111610	11/16/12	11/19/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		118 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	**	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	**	"	"	"	"	"
1,2-Dichloroethane	0.56	0.50	"	"	"	"	"	"
1,1-Dichloroethene	2.2	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	11	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_705_111412_02 T122120-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

71490 10 11		SunStar La	iboratori	es, mc.				
Volatile Organic Compounds by 1,3-Dichloropropane	EPA Method 8260B ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260E
2,2-Dichloropropane	ND	1.0	"	,,	"	"	"	"
1,1-Dichloropropene	ND	1.0	"		"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"		"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.0	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	1.1	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Γoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Fert-butyl alcohol	24	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_705_111412_02 T122120-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.7	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		78.6 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_706_111512_01 T122120-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2111610 11/16/12

11/19/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)

eo er = (erre)	1,2		₩Ð 1					
Surrogate: 4-Bromofluorobenzene		120 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	II .
Bromoform	ND	1.0	"	"	"	"	"	II .
Bromomethane	ND	1.0	"	"	"	"	"	II .
n-Butylbenzene	ND	1.0	"	"	"	"	"	II .
sec-Butylbenzene	ND	1.0	"	"	"	"	"	II .
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	II .
Chloroform	ND	1.0	"	"	"	"	"	II .
Chloromethane	ND	1.0	"	"	"	"	"	II .
2-Chlorotoluene	ND	1.0	"	"	"	"	"	II .
4-Chlorotoluene	ND	1.0	"	"	"	"	"	II .
Dibromochloromethane	ND	1.0	"	"	"	"	"	II .
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	II .

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_706_111512_01 T122120-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	6.1	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	1.2	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	3.0	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	2.6	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	3.0	0.50	"	"	"	"	"	"
,p-Xylene	4.1	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_706_111512_01 T122120-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstai Laboratories, inc.										
Volatile Organic Compounds by EPA	Volatile Organic Compounds by EPA Method 8260B										
Tert-butyl alcohol	110	10	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	6.6	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		96.9 %	83.5-	119	"	"	"	"			
Surrogate: Dibromofluoromethane		90.8 %	81-1	36	"	"	"	"			
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

11/19/12

EPA 8015C

11/16/12

2111610

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_706_111512_02 T122120-07 (Water)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note.

SunStar Laboratories, Inc.

ug/l

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		119 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_706_111512_02 T122120-07 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, inc.								
Volatile Organic Compounds by El	PA Method 8260B							
1,2-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	2.9	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	3.1	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	0.86	0.50	"	"	"	"	"	"
m,p-Xylene	1.1	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_706_111512_02 T122120-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Tert-butyl alcohol	110	10	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	5.6	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		92.6 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		91.9 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

LL_707_111512_01 T122120-08 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum	Hydrocarbons	by EPA	8015C
----------------------------	--------------	--------	-------

C6-C12 (GRO)	310	50	ug/l	1	2111610	11/16/12	11/19/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		134 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.0	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_707_111512_01 T122120-08 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	2.2	1.0	"	"	"	"	"	"	
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	21	1.0	"	"	"	"	"	"	
1-Propylbenzene	5.1	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.7	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	11	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	180	0.50	"	"	"	"	"	"	1
Гoluene	11	0.50	"	"	"	"	"	"	
Ethylbenzene	6.6	0.50	"	"	"	"	"	"	
n,p-Xylene	29	1.0	"	"	"	"	"	"	
o-Xylene	9.5	0.50	"	"	"	"	"	"	
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Γert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_707_111512_01 T122120-08 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Methyl tert-butyl ether	2.3	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		91.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_TB_111512 T122120-09 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_TB_111512 T122120-09 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

LL_TB_111512 T122120-09 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2111612	11/16/12	11/17/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		90.8 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		89.9 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2111610 - EPA 5030 GC										
Blank (2111610-BLK1)				Prepared:	11/16/12	Analyzed				
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	115		"	100		115	65-135			
LCS (2111610-BS1)				Prepared:	Prepared: 11/16/12 Analyzed: 11/19/12					
C6-C12 (GRO)	4520	50	ug/l	5500		82.1	75-125			
Surrogate 4-Bromofluorobenzene	134		"	100		134	65-135			
Matrix Spike (2111610-MS1)	Sou	rce: T12212	0-01	Prepared:	11/16/12	Analyzed	l: 11/19/12			
C6-C12 (GRO)	4740	50	ug/l	5500	280	81.1	65-135			
Surrogate 4-Bromofluorobenzene	165		"	100		165	65-135			S-04
Matrix Spike Dup (2111610-MSD1)	Sou	Source: T122120-01		Prepared: 11/16/12 Analyzed: 11/19/12						
C6-C12 (GRO)	4880	50	ug/l	5500	280	83.6	65-135	2.92	20	
Surrogate 4-Bromofluorobenzene	144		"	100		144	65-135			S-0-

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2	2111612 -	EPA 5030	GCMS
---------	-----------	----------	------

Blank (2111612-BLK1)				Prepared: 11/16/12 Analyzed: 11/17/12
Bromobenzene	ND	1.0	ug/l	·
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wandy Flsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/28/12 13:25

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2111612-BLK1)				Prepared: 11/1	6/12 Analyze	d: 11/17/12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
etrachloroethene	ND	1.0	"			
2,3-Trichlorobenzene	ND	1.0	"			
2,4-Trichlorobenzene	ND	1.0	"			
1,2-Trichloroethane	ND	1.0	"			
1,1-Trichloroethane	ND	1.0	"			
richloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
,2,3-Trichloropropane	ND	1.0	"			
3,5-Trimethylbenzene	ND	1.0	"			
2,4-Trimethylbenzene	ND	1.0	"			
inyl chloride	ND	1.0	"			
enzene	ND	0.50	"			
oluene	ND	0.50	"			
thylbenzene	ND	0.50	"			
n,p-Xylene	ND	1.0	"			
-Xylene	ND	0.50	"			
ert-amyl methyl ether	ND	2.0	"			
ert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	7.22		"	8.00	90.2	83.5-119
urrogate Dibromofluoromethane	7.44		"	8.00	93.0	81-136
Surrogate Toluene-d8	8.52		"	8.00	106	88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2111612 - EPA 5030 GCMS										
LCS (2111612-BS1)				Prepared:	11/16/12	Analyze	d: 11/17/12			
Chlorobenzene	22.5	1.0	ug/l	20.0		112	75-125			
1,1-Dichloroethene	22.7	1.0	"	20.0		113	75-125			
Trichloroethene	18.9	1.0	"	20.0		94.4	75-125			
Benzene	22.5	0.50	"	20.0		113	75-125			
Toluene	18.3	0.50	"	20.0		91.4	75-125			
Surrogate 4-Bromofluorobenzene	7.48		"	8.00		93.5	83.5-119			
Surrogate Dibromofluoromethane	7.91		"	8.00		98.9	81-136			
Surrogate Toluene-d8	8.12		"	8.00		102	88.8-117			
Matrix Spike (2111612-MS1)	Source: T122120-01			Prepared: 11/16/12 Analyzed: 11/17/12						
Chlorobenzene	21.3	1.0	ug/l	20.0	ND	107	75-125			
1,1-Dichloroethene	22.3	1.0	"	20.0	2.52	99.0	75-125			
Trichloroethene	17.1	1.0	"	20.0	ND	85.6	75-125			
Benzene	23.8	0.50	"	20.0	4.07	98.9	75-125			
Toluene	17.0	0.50	"	20.0	ND	85.0	75-125			
Surrogate 4-Bromofluorobenzene	7.92		"	8.00		99.0	83.5-119			
Surrogate Dibromofluoromethane	7.67		"	8.00		95.9	81-136			
Surrogate Toluene-d8	6.79		"	8.00		84.9	88.8-117			S-GO
Matrix Spike Dup (2111612-MSD1)	So	urce: T12212	0-01	Prepared:	11/16/12	Analyze	d: 11/17/12			
Chlorobenzene	20.8	1.0	ug/l	20.0	ND	104	75-125	2.47	20	
1,1-Dichloroethene	22.8	1.0	"	20.0	2.52	101	75-125	1.91	20	
Trichloroethene	16.9	1.0	"	20.0	ND	84.6	75-125	1.18	20	
Benzene	22.4	0.50	"	20.0	4.07	91.5	75-125	6.40	20	
Toluene	16.8	0.50	"	20.0	ND	84.0	75-125	1.24	20	
Surrogate 4-Bromofluorobenzene	8.13		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	6.86		"	8.00		85.8	81-136			
Surrogate Toluene-d8	7.13		"	8.00		89.1	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/28/12 13:25

Notes and Definitions

S-GC	Surrogate recovery outside of established control limits. T	he data was accepted based on valid	recovery of the remaining surrogate(s).

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though it was above calibration range.

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX-ENVIRONMENTA	ne: (714) 508-0800 Fax: (714) 508-0880 ect Manager: Jeremy Squire (714) 604-5836 ≨			15.2012	Page	e:OF1	
Address: 2640 Walnut Ave, Unit F			Project Na	me: CENCO			
Phone: (714) 508-0800 Fax:	(714) 508-0880		Collector:	Frane Sosic	Clien	nt Project #: 1003-001-30	0
Project Manager: Jeremy Squire	(714) 604-5836		Batch #:	T122120	EDF	#:	
	T				TIT		
		(S) (Q)			ا ي		
		5 N			l jie		
		(8015)			containers		#
					of o	•	J /ro
	Date	Sample I			#		orate
Sample ID	Sampled Time				Total	Comments/Preservative	Laboratory ID
11-703_111412_01	11.14.12 9:24	GW XX			6		01
11-704-111412-01	11.14.12 13:33	GW XX			6		02
11-404_11412_02	11.14.12 14:00				6		03
LL_705_111412_01	11.14.12 K:20				6		04
LL_705_11412_02	11-14-12 16:35				6		05
LL_706_111512_01	11.15.12 13:34	GW XX			6		06
LL_706_111512_02	11.15.12 14:16	aw XX			6		07
11_707_11512_01	11.15.12 16:00				6		08
LL_TB_111512		Water X			2		oq
Relinquished by (signature)	Date / Time	Received by: (Sign / D	Date / Time)	Total # of containers	50	Notes	
	E IIIS.ZAZ	1 W	11/15/12	Chain of Custody seals	N .		
Relinquished by: (signature	Date / Time	Received by: (Sign / D	′ 1	Seals intact? Y/N/NA	A/A		
				Received good condition/cold	1,5	2.4°	
Relinquished by: (signature)	Date / Time	Received by: (Sign / D	Jate / Time)		<u> </u>	d. 4	
				Turn around time:	Standard		
Sample disposal Instructions: Disposal @ \$3	2.00 each Retur	n to client Pick	.up				

SAMPLE RECEIVING REVIEW SHEET

BATCH#	
Client Name: Musex	Project: Cenco
Received by:	Date/Time Received: //./5-12/ 17:07
Delivered by: Client SunStar Courier	GSO FedEx Other
Total number of coolers received	Temp criteria = 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1°C +/- the CF (-0	0.2°C) =°C corrected temperature
cooler #2°C +/- the CF (-0	0.2°C) =°C corrected temperature
cooler #3°C +/- the CF (-0	0.2°C) =°C corrected temperature
Samples outside temp. but received on ice, w/in 6	hours of final sampling. Yes \[\]No* \[\]N/A
Custody Seals Intact on Cooler/Sample	☐Yes ☐No* ☑N/A
Sample Containers Intact	∑Yes □No*
Sample labels match COC ID's	⊠Yes □No*
Total number of containers received match COC	∑Yes □No*
Proper containers received for analyses requested	on COC Yes \(\sum No*
Proper preservative indicated on COC/containers f	for analyses requested Yes No* N/A
Complete shipment received in good condition wit preservatives and within method specified holding	times. Yes No*
* Complete Non-Conformance Receiving Sheet if check	ked Cooler/Sample Review - Initials and date Scilled
Comments:	

27 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/16/12 15:32. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_708_111612_01	T122135-01	Water	11/16/12 09:30	11/16/12 15:32
LL_709_111612_01	T122135-02	Water	11/16/12 11:48	11/16/12 15:32
LL_710_111612_01	T122135-03	Water	11/16/12 13:41	11/16/12 15:32
LL_711_111612_01	T122135-04	Water	11/16/12 15:27	11/16/12 15:32
LL_TB_111612	T122135-05	Water	11/16/12 00:00	11/16/12 15:32

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_708_111612_01 T122135-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	1000	50	ug/l	1	2111908	11/19/12	11/20/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		195 %	65-1	35	"	"	"	"	S-04
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	3.6	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.5	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

ND

1.0

SunStar Laboratories, Inc.

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_708_111612_01 T122135-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	, i	Sunstai La	idoi atoi i	es, mc.				
Volatile Organic Compounds by 1	EPA Method 8260B	3						
1,2-Dichloropropane	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	2.8	1.0	**	"	"	"	"	"
p-Isopropyltoluene	1.2	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	4.0	1.0	"	"	"	"	"	"
n-Propylbenzene	7.6	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	**	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	**	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	**	"	"	"	"	"
1,3,5-Trimethylbenzene	13	1.0	**	"	"	"	"	"
1,2,4-Trimethylbenzene	37	1.0	**	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	73	0.50	"	"	"	"	"	"
Toluene	0.57	0.50	"	"	"	"	"	"
Ethylbenzene	5.4	0.50	"	"	"	"	"	"
m,p-Xylene	9.5	1.0	"	"	"	"	"	"
o-Xylene	0.58	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	55	10	"	"	"	"	"	11

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_708_111612_01 T122135-01 (Water)

ı										
			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	3.8	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		103 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		91.1 %	81-1	36	"	"	"	"

88.8-117

108 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_709_111612_01 T122135-02 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	650	50	ug/l	1	2111908	11/19/12	11/20/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		131 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.1	1.0	"	"	"	"	"	"
sec-Butylbenzene	3.5	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_709_111612_01 T122135-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	16	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	8.2	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1.7	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	100	10	**	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_709_111612_01 T122135-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Di-isopropyl ether	ND	2.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	2.4	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			

 CFC 113)
 Surrogate: 4-Bromofluorobenzene
 102 %
 83.5-119
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 <th

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_710_111612_01 T122135-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	95	50	ug/l	1	2111908	11/19/12	11/20/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		115 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	4.8	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	86	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	19	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	2.0	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_710_111612_01 T122135-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by	EPA Method 8260B ND	1.0	/1	1	2111007	11/10/12	11/01/10	EDA 02/0E			
1,3-Dichloropropane	ND ND	1.0	ug/l "	1	2111907	11/19/12	11/21/12	EPA 8260E			
2,2-Dichloropropane	ND ND	1.0	"	,,	"	"	,,	"			
1,1-Dichloropropene			"	,,	,,	,,	,,	,,			
cis-1,3-Dichloropropene	ND	0.50	"	,,	,,	,,	,,	"			
trans-1,3-Dichloropropene	ND	0.50	"	,,	,,	,,	,,	"			
Hexachlorobutadiene	ND	1.0	"	,,	"	,,	,,	"			
Isopropylbenzene	ND	1.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	1.0	"			"	,,				
Methylene chloride	ND	1.0	"	"	"			"			
Naphthalene	ND	1.0	"	"	"	"	"	"			
n-Propylbenzene	ND	1.0						"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	81	1.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Frichloroethene	130	1.0	"	"	"	"	"	"			
Trichlorofluoromethane	1.4	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	8.2	1.0	"	"	"	"	"	"			
Benzene	ND	0.50	"	"	"	"	"	"			
Γoluene	ND	0.50	"	"	"	"	"	"			
Ethylbenzene	ND	0.50	"	"	"	"	"	"			
m,p-Xylene	ND	1.0	"	"	"	"	"	"			
o-Xylene	ND	0.50	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"			
Tert-butyl alcohol	ND	10	"	"	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_710_111612_01 T122135-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Di-isopropyl ether	ND	2.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"		
1,1,2-trichloro-1,2,2-trifluoroethane	16	5.0	"	"	"	"	"	"		
(CFC 113)										

 1,1,2-trichloro-1,2,2-trifluoroethane
 16
 5.0
 " " " " " " " " "

 (CFC 113)
 Surrogate: 4-Bromofluorobenzene
 88.1 %
 83.5-119
 " " " " " " " "

 Surrogate: Dibromofluoromethane
 92.9 %
 81-136
 " " " " " " "

 Surrogate: Toluene-d8
 106 %
 88.8-117
 " " " " " " " " "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

EPA 8015C

11/20/12

Murex Project: Cenco

35000

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_711_111612_01 T122135-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

50

Purgeable	Petroleum	Hydrocarbons	by EPA	A 8015C

C6-C12 (GRO)

()	23000			-	===1700		22.20/12		
Surrogate: 4-Bromofluorobenzene		128 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	38	1.0	"	"	"	"	"	"	
sec-Butylbenzene	15	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.3	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	1.2	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	19	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	5.9	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11/19/12

2111908

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_711_111612_01 T122135-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	L	ounstar La	ibui atui	ies, inc.					
1,3-Dichloropropane	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260E	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	84	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	4.1	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	350	100	"	100	"	"	"	"	
n-Propylbenzene	160	1.0	"	1	"	"	"	"	
Styrene	2.2	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Γrichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	210	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	430	1.0	"	"	"	"	"	"	
Vinyl chloride	120	1.0	"	"	"	"	"	"	
Benzene	6200	50	"	100	"	"	"	"	
Гoluene	7000	50	"	"	"	"	"	"	
Ethylbenzene	1400	50	"	"	"	"	"	"	
n,p-Xylene	4500	100	"	"	"	"	"	"	
o-Xylene	2300	50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"	
Tert-butyl alcohol	41	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_711_111612_01 T122135-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260F	3
--	---

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B	_
Methyl tert-butyl ether	4.4	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		76.1 %	81-1	136	"	"	"	"	S-GC
Surrogate: Toluene-d8		94.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_TB_111612 T122135-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

LL_TB_111612 T122135-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	3	unstar La	iboratori	es, inc.					
Volatile Organic Compounds by I	EPA Method 8260B								
cis-1,3-Dichloropropene	ND	0.50	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

LL_TB_111612 T122135-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2111907	11/19/12	11/21/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		96.2 %	83.5-11	9	"	"	"	"	
Surrogate: Dibromofluoromethane		78.8 %	81-136		"	"	"	"	S-GC
Surrogate: Toluene-d8		100 %	88.8-11	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2111908 - EPA 5030 GC										
Blank (2111908-BLK1)				Prepared:	11/19/12	Analyzed	l: 11/20/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	110		"	100		110	65-135			
LCS (2111908-BS1)				Prepared:	11/19/12	Analyzed	l: 11/20/12			
C6-C12 (GRO)	4390	50	ug/l	5500		79.8	75-125			
Surrogate 4-Bromofluorobenzene	135		"	100		135	65-135			
Matrix Spike (2111908-MS1)	Sou	rce: T12213	5-01	Prepared:	11/19/12	Analyzed	l: 11/20/12			
C6-C12 (GRO)	5140	50	ug/l	5500	999	75.4	65-135			
Surrogate 4-Bromofluorobenzene	133		"	100		133	65-135			
Matrix Spike Dup (2111908-MSD1)	Sou	rce: T12213	5-01	Prepared:	11/19/12	Analyzed	l: 11/20/12			
C6-C12 (GRO)	5050	50	ug/l	5500	999	73.6	65-135	1.91	20	
Surrogate 4-Bromofluorobenzene	133		"	100		133	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

A1 -4	D 1:	Reporting	TT. 14.	Spike	D 14	0/DEC	70KEC	DDD	KPD	NT.4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2111907 - EPA 5030 GCMS										
Blank (2111907-BLK1)				Prepared:	11/19/12	Analyzed	: 11/20/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							

SunStar Laboratories, Inc.

Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Source

Spike

evenly flsia

ND

1.0

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/27/12 16:55

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Result	Limit	Oma	Level	Result	/UKLC	Lillito	KI D	Limit	110103
Batch 2111907 - EPA 5030 GCMS				D 1	11/10/12	A 1 1	11/20/12			
Blank (2111907-BLK1)	ND	1.0	/1	Preparea:	11/19/12	Anaiyzed	1: 11/20/12			
p-Isopropyltoluene	ND	1.0	ug/l "							
Methylene chloride	ND	1.0	,,							
Naphthalene	ND	1.0	,,							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	6.89		"	8.00		86.1	83.5-119			
Surrogate Dibromofluoromethane	7.16		"	8.00		89.5	81-136			
Surrogate Toluene-d8	8.43		"	8.00		105	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2111907 - EPA 5030 GCMS										
LCS (2111907-BS1)				Prepared:	11/19/12	Analyzed	d: 11/21/12			
Chlorobenzene	21.0	1.0	ug/l	20.0		105	75-125			
1,1-Dichloroethene	21.2	1.0	"	20.0		106	75-125			
Trichloroethene	18.5	1.0	"	20.0		92.4	75-125			
Benzene	22.2	0.50	"	20.0		111	75-125			
Toluene	20.0	0.50	"	20.0		99.8	75-125			
Surrogate 4-Bromofluorobenzene	6.74		"	8.00		84.2	83.5-119			
Surrogate Dibromofluoromethane	7.57		"	8.00		94.6	81-136			
Surrogate Toluene-d8	6.78		"	8.00		84.8	88.8-117			S-GO
Matrix Spike (2111907-MS1)	Sor	urce: T12211	6-01	Prepared:	11/19/12	Analyzed	d: 11/21/12			
Chlorobenzene	19.8	1.0	ug/l	20.0	ND	99.1	75-125			
1,1-Dichloroethene	21.3	1.0	"	20.0	ND	107	75-125			
Trichloroethene	17.8	1.0	"	20.0	ND	89.0	75-125			
Benzene	23.0	0.50	"	20.0	ND	115	75-125			
Toluene	18.5	0.50	"	20.0	ND	92.5	75-125			
Surrogate 4-Bromofluorobenzene	7.59		"	8.00		94.9	83.5-119			
Surrogate Dibromofluoromethane	8.26		"	8.00		103	81-136			
Surrogate Toluene-d8	7.66		"	8.00		95.8	88.8-117			
Matrix Spike Dup (2111907-MSD1)	Sor	urce: T12211	6-01	Prepared:	11/19/12	Analyzed	d: 11/21/12			
Chlorobenzene	21.6	1.0	ug/l	20.0	ND	108	75-125	8.36	20	
1,1-Dichloroethene	21.9	1.0	"	20.0	ND	110	75-125	2.77	20	
Trichloroethene	17.3	1.0	"	20.0	ND	86.4	75-125	2.91	20	
Benzene	21.4	0.50	"	20.0	ND	107	75-125	6.89	20	
Toluene	17.9	0.50	"	20.0	ND	89.4	75-125	3.35	20	
Surrogate 4-Bromofluorobenzene	7.74		"	8.00		96.8	83.5-119			
Surrogate Dibromofluoromethane	8.09		"	8.00		101	81-136			
Surrogate Toluene-d8	7.16		"	8.00		89.5	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

every flas

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/27/12 16:55

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX	<u> </u>	1. . 					Date	e:	11-	16		20	12		_Pag	ge:Of	
Address: 15375 Barra	ruca Pku	14 K-1	OI, Irvi	ne, CA9	26/2	3	Proj	ect N	lame		<u>CE</u>	NC	<u> 20</u>				
Address: 15375 Barra Phone: (714) 508-6	0800_	Fax: (4)	(4) 508	-Ó830-			Coll	ector	<u> </u>		1	·.			Clier	nt Project #: <u>/003-00/i</u> -	_300
Project Manager. Jefe	my S	wire					Bato	ch #:_		TI	221	35	· · ·		EDF	: #:	
		Ť ·	<u> </u>	1		Т-	П	\neg	T	T-			\top	·	F	1	
					-										1		
			ŀ							_≘	2		}	ļ			} }
						<u> </u>				Chain	leta						
		ļ .				2			_	l o	22 N						ners
						OXY only		-	8015M (diesel)	8015M Ext./Carbon	6010/7000 Title 22 Metals				# 0		containers
						<u> </u>		Ä	gast	X X	8	ŧ					8
		1	0	Container	1	8260 BTEX,		8021 BTEX	8015M (diesel)	NZ ZM	0,70	.			Laboratory		900 Total # of
Sample ID	Date Sample	Time	Sample Type	Container Type	8260 8260	3260	8270	8 8		801	18				abc	Comments/Preservative	[g]
LL_708_111612_01	11.16.12	930	aw	40 mL VOA	~ ×	٢ -			Ž						01		6
	11.6.12	1148	GW		>				$\langle _ \rangle$						02		6
EL_410_111612_01	11.16.12	1341	I GW		>										03		6
KL_711_11161Z-01	11.16.12	1527	GW Water			<u> </u>		>	<u> </u>						04		6
11-18-1116/2	,		Water		X	4_				1	\vdash	\dashv	1		05		2
					-	+-			-	+	-	+	+	,	-		+-1
	<u> </u>					+-		\vdash	+		\vdash	+	+	-	-		++1
												I					
						4		_		4-			—		<u> </u>		
						-}		\dashv	+		\vdash	\dashv	+				+
					-	+-	-	\dashv	+	+		-	+		-		
						+			1	+		+	\top				++
Relinquished by: (signature)	Date / T	ime	Received	y: (signature)		Dat	e / Ti	me			То	tal # c	of conta	ainers	26	Notes	
F.S.	ie 11.16.12	1532	///	Je .	11/16	112	1.	532	, cı	hain o	f Cust	tody s	eals Y/	N/NA	N		
Relinquished by: (signature)	Date / T			y: (signature)			e / Ti	me			Sea	als inta	act? Y/	N/NA	MA	•	
										Recei	ved g	ood co	ondition	n/cold	7	4.2	
Relinquished by: (signature)	Date / T	ime	Received b	y: (signature)	-	Dat	e / Ti	me									
									Tu	ırn ar	ound	time					
Sample disposal Instructions: Di	isposal @ \$2.00	each	Return	to client	1	Pickup											

SAMPLE RECEIVING REVIEW SHEET

BATCH # T122 135	
Client Name: Project	iect: <u>Cenco</u>
Received by: Jan Marteski Date	e/Time Received: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Delivered by: Client SunStar Courier GSO	FedEx Other
Total number of coolers received Temp criter	ria = 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 $\underline{\vee, \vee}$ °C +/- the CF (-0.2°C) = $\underline{\vee, \vee}$	°C corrected temperature
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperature
cooler #3°C +/- the CF (- 0.2°C) =	°C corrected temperature
Samples outside temp. but received on ice, w/in 6 hours of final sa	ampling. ☑Yes □No* □N/A
Custody Seals Intact on Cooler/Sample	□Yes □No* ⊠Ń/A
Sample Containers Intact	⊠Yes □No*
Sample labels match COC ID's	⊠Yes □No*
Total number of containers received match COC	⊠Yes □No*
Proper containers received for analyses requested on COC	⊠Yes □No*
Proper preservative indicated on COC/containers for analyses requ	uested Yes No* N/A
Complete shipment received in good condition with correct temper preservatives and within method specified holding times. Yes	s No*
* Complete Non-Conformance Receiving Sheet if checked Cooler	r/Sample Review - Initials and date
Comments:	

29 November 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

Wordy Flsia

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 11/20/12 16:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/29/12 14:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_712_111912_01	T122165-01	Water	11/19/12 08:37	11/20/12 16:45
LL_713_111912_01	T122165-02	Water	11/19/12 11:00	11/20/12 16:45
LL_714_111912_01	T122165-03	Water	11/19/12 12:47	11/20/12 16:45
LL_715_111912_01	T122165-04	Water	11/19/12 15:26	11/20/12 16:45
LL_W11_111912_01	T122165-05	Water	11/19/12 17:00	11/20/12 16:45
LL_TB_111912	T122165-06	Water	11/19/12 17:00	11/20/12 16:45

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 11/29/12 14:38

EPA 8015C

LL_712_111912_01 T122165-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/1

2112131

11/21/12

11/26/12

50

CU-C12 (GRO)	070	50	u <u>z</u> /1	1	2112131	11/21/12	11/20/12	LI A 0015C	
Surrogate: 4-Bromofluorobenzene		134 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.5	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	

1.0

0.50

1.0

1.0

1.0

ND

ND

ND

ND

ND

SunStar Laboratories, Inc.

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evenly flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_712_111912_01 T122165-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	4.2	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	11	1.0	"	"	"	"	"	"
n-Propylbenzene	4.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	4.9	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	17	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	55	0.50	"	"	"	"	"	"
Гoluene	5.8	0.50	"	"	"	"	"	"
Ethylbenzene	8.1	0.50	"	"	"	"	"	"
m,p-Xylene	37	1.0	"	"	"	"	"	"
o-Xylene	8.6	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_712_111912_01 T122165-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	5.9	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		81.5 %	81-1	36	"	"	"	"

88.8-117

106 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_713_111912_01 T122165-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	750	50	ug/l	1	2112131	11/21/12	11/26/12	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		116 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_713_111912_01 T122165-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.							
Volatile Organic Compounds by EPA Method 8260B											
1,2-Dichloropropane	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B			
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
sopropylbenzene	7.0	1.0	"	"	"	"	"	"			
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Naphthalene	13	1.0	"	"	"	"	"	"			
n-Propylbenzene	11	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Trichloroethene	ND	1.0	"	"	"	"	"	"			
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	ND	1.0	"	"	"	"	"	"			
Benzene	350	12	"	25	"	"	"	"			
Toluene	0.79	0.50	"	1	"	"	"	"			
Ethylbenzene	1.5	0.50	"	"	"	"	"	"			
n,p-Xylene	2.1	1.0	"	"	"	"	"	"			
o-Xylene	ND	0.50	"	"	"	"	"	"			
Геrt-amyl methyl ether	ND	2.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_713_111912_01 T122165-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	iboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B	}							
Tert-butyl alcohol	73	10	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	190	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		81.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

11/26/12

EPA 8015C

11/21/12

2112131

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_714_111912_01 T122165-03 (Water)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note.

SunStar Laboratories, Inc.

ug/l

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		110 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_714_111912_01 T122165-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	5	unstar La	iboratori	es, inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,2-Dichloropropane	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	3.7	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	1.2	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_714_111912_01 T122165-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	;	sunstar La	iboratori	es, inc.					
Volatile Organic Compounds by EPA	Method 8260I	3							
Tert-butyl alcohol	20	10	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.4	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		82.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		106 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

EPA 8015C

11/26/12

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_715_111912_01 T122165-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2112131 11/21/12

50

ND

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)

00 012 (0110)			WB 1					
Surrogate: 4-Bromofluorobenzene		114 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	u .

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_715_111912_01 T122165-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.								
Volatile Organic Compounds by								
1,2-Dichloropropane	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	2.2	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	0.52	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_715_111912_01 T122165-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	5	unstar La	borator	ies, inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.9 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		86.1 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_W11_111912_01 T122165-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	1400	50	ug/l	1	2112131	11/21/12	11/26/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	2.9	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	5.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_W11_111912_01 T122165-05 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by	EPA Method 8260B	}						
1,3-Dichloropropane	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.0	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	60	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	3.1	1.0	"	"	"	"	"	"
Vinyl chloride	1.3	1.0	"	"	"	"	"	"
Benzene	24	0.50	"	"	"	"	"	"
Toluene	1.6	0.50	"	"	"	"	"	"
Ethylbenzene	0.82	0.50	"	"	"	"	"	"
m,p-Xylene	6.2	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_W11_111912_01 T122165-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	;	SunStar La	aborato	ries, Inc.					
Volatile Organic Compou	ands by EPA Method 8260I	3							

Volatile Organic Compounds by EPA Method 8260B Di-isopropyl ether ND 2.0 ug/l 1 2112130 11/21/12 11/22/12 EPA 8260B Ethyl tert-butyl ether ND 2.0 "									
Di-isopropyl ether	ND	2.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		81.9 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		108 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_TB_111912 T122165-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	iboratori	es, Inc.				
Volatile Organic Compounds by El								
Bromobenzene	ND	1.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

LL_TB_111912 T122165-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

LL_TB_111912 T122165-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2112130	11/21/12	11/22/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		92.5 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		87.1 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2112131 - EPA 5030 GC										
Blank (2112131-BLK1)				Prepared:	11/21/12	Analyzed	l: 11/29/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	108		"	100		108	65-135			
LCS (2112131-BS1)				Prepared:	11/21/12	Analyzed	l: 11/26/12			
C6-C12 (GRO)	4950	50	ug/l	5500		90.0	75-125			
Surrogate 4-Bromofluorobenzene	134		"	100		134	65-135			
Matrix Spike (2112131-MS1)	Sou	rce: T12216	5-01	Prepared:	11/21/12	Analyzed	l: 11/26/12			
C6-C12 (GRO)	4530	50	ug/l	5500	671	70.2	65-135			
Surrogate 4-Bromofluorobenzene	134		"	100		134	65-135			
Matrix Spike Dup (2112131-MSD1)	Sou	rce: T12216	5-01	Prepared:	11/21/12	Analyzed	l: 11/26/12			
C6-C12 (GRO)	4330	50	ug/l	5500	671	66.5	65-135	4.58	20	
Surrogate 4-Bromofluorobenzene	134		"	100		134	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia Wendy Hsiao, Project Manager

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
riiaiyic	Kesuit	Liifilt	UIIIIS	Level	Kesult	70KEC	LIIIIIS	KrD	LIIIII	notes
Batch 2112130 - EPA 5030 GCMS										
Blank (2112130-BLK1)				Prepared:	11/21/12	Analyzed	: 11/22/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	**							
ec-Butylbenzene	ND	1.0	**							
ert-Butylbenzene	ND	1.0	**							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
l-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
,2-Dichlorobenzene	ND	1.0	"							
,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
,1-Dichloroethane	ND	1.0	"							
,2-Dichloroethane	ND	0.50	"							
,1-Dichloroethene	ND	1.0	"							
sis-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
,1-Dichloropropene	ND	1.0	"							
sis-1,3-Dichloropropene	ND	0.50	"							
rans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
sopropylbenzene	ND	1.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Source

Spike

evenly flsia

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2112130 - EPA 5030 GCMS										
Blank (2112130-BLK1)				Prepared:	11/21/12	Analyzed	1: 11/22/12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
,2,3-Trichloropropane	ND	1.0	"							
,3,5-Trimethylbenzene	ND	1.0	"							
,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
n,p-Xylene	ND	1.0	"							
-Xylene	ND	0.50	"							
Fert-amyl methyl ether	ND	2.0	"							
Fert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.70		"	8.00		96.2	83.5-119			
Surrogate Dibromofluoromethane	6.53		"	8.00		81.6	81-136			
Surrogate Toluene-d8	8.33		"	8.00		104	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 11/29/12 14:38

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2112130 - EPA 5030 GCMS										
LCS (2112130-BS1)				Prepared:	11/21/12	Analyzed	d: 11/22/12			
Chlorobenzene	21.0	1.0	ug/l	20.0		105	75-125			
1,1-Dichloroethene	17.6	1.0	"	20.0		87.8	75-125			
Trichloroethene	18.4	1.0	"	20.0		92.0	75-125			
Benzene	19.6	0.50	"	20.0		97.8	75-125			
Toluene	20.8	0.50	"	20.0		104	75-125			
Surrogate 4-Bromofluorobenzene	8.27		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	6.53		"	8.00		81.6	81-136			
Surrogate Toluene-d8	8.66		"	8.00		108	88.8-117			
Matrix Spike (2112130-MS1)	Source: T122165-01			Prepared:	11/21/12					
Chlorobenzene	20.1	1.0	ug/l	20.0	ND	100	75-125			
1,1-Dichloroethene	17.5	1.0	"	20.0	ND	87.4	75-125			
Trichloroethene	16.7	1.0	"	20.0	ND	83.7	75-125			
Benzene	73.4	0.50	"	20.0	55.0	91.9	75-125			
Toluene	25.2	0.50	"	20.0	5.85	96.8	75-125			
Surrogate 4-Bromofluorobenzene	8.47		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	7.10		"	8.00		88.8	81-136			
Surrogate Toluene-d8	8.32		"	8.00		104	88.8-117			
Matrix Spike Dup (2112130-MSD1)	So	urce: T12216	5-01	Prepared:	11/21/12	Analyzed	d: 11/22/12			
Chlorobenzene	21.4	1.0	ug/l	20.0	ND	107	75-125	6.56	20	
1,1-Dichloroethene	18.1	1.0	"	20.0	ND	90.5	75-125	3.43	20	
Trichloroethene	18.2	1.0	"	20.0	ND	90.9	75-125	8.25	20	
Benzene	79.8	0.50	"	20.0	55.0	124	75-125	8.41	20	
Toluene	27.1	0.50	"	20.0	5.85	106	75-125	7.26	20	
Surrogate 4-Bromofluorobenzene	8.48		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	7.37		"	8.00		92.1	81-136			
Surrogate Toluene-d8	8.10		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wandy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire11/29/12 14:38

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

Client: MUREX ENVIRONMENTAL	INC.						Date:					_			Pag	ge: t		OF		_
Address: 2640 Walnut Ave, Unit F							⊃roje													
Phone: (714) 508-0800 Fax: (714) 508-0880					(Collector: Frane Sosic					Client Project #: 1003-001-300									
Project Manager: Jeremy Squire (714) 604-583	36				E	3atcl	ı #:_	TI	221	55				EDF	#:				_
· · · · · · · · · · · · · · · · · · ·		T :	1	T	Γ-1	-Т	T		T	П	- 17		<u> </u>						•	Τ-
																Ì				
										.										
										1.										
				Ξ	B)	.	1					1			ers					1.
				5		.								ľ	tain					**
			ļ.	(8015	(8260			'							containers					_aboratory ID #
				1	1 1										9			1		tony
	Date		Sample	TPHg	١٥١									1	#					orat
Sample ID	Sampled	Time	Туре	片	Š			5g .	1		: 10 c				Total	Cor	nment	s/Preser	vative	Lab
LL_712_111912_01	11.19:12	8:37	GW	X	X			<u> </u>	. ~						6					01
11 713 111912_01	11.19.12	11:00	GW	X	X			1							6					02
12-714 111912_01	11.19.12	12:47	GW	X	X			*	_		_			ļ	6					03
4_715_111912_01	11.19.12	15:26	GW	X	X	_			_					ļ	6				· · · · · · · · · · · · · · · · · · ·	04
LC_WIL_111912_01	11.19.12	17:00		X	X	_		_			_		↓_	<u> </u>	6					05
U_TB_112012			Water		X	_		_		\sqcup	_				2					08
				<u> </u>		_	_	_	1			_	 -	<u> </u>	<u> </u>					
				_		_		_					_							╄
					-		-	-	-	-	_		-	-	<u> </u>					-
Polinguiphed by (signature)	Date / T	imo		<u> </u> (8	ian /	Date	/ Tim	<u> </u>	To	21 # 0	<u> </u>	-			20			N1-4		
Relinquished by: (signature) Date / Time		Received by: (Sign / Da				\645		10	Total # of containers			 	32	Notes Notes						
F. Sasic 11.20.2012 16:45		11 2012				2					_N		- 1							
Relinquiched by: (signature) Date / Time		Received by: (Sign / Date / Time)			e)	Seals intact? Y/N/NA Received good			N/	A	{		•							
	5		D			D 4-	/ T:	- \		dition/				V		2.6				
Relinquished by: (signature)	Date / T	ше	Received b	эy: (S	ngn /	Date	7 HM	е)	-					1						
			L						Tur	n aro	und	time:		Stand	ard					
Sample disposal Instructions: Disposal @ \$2.0	00 each	Return t	o client		Pic	kup _														

SAMPLE RECEIVING REVIEW SHEET

BATCH# TIZZIGS			
Client Name: Munex Project:	Cenco		
Received by: Date/Tin	ne Received:	1.20.12	16:45
Delivered by: Client SunStar Courier GSO Fee	dEx Other		
Total number of coolers receivedo Temp criteria =	: 6°C > 0°C (no	frozen cor	ıtainers)
Temperature: cooler #1 2.2 °C +/- the CF (-0.2°C) = 2.6 °C	corrected temperatu	ıre	
cooler #2°C +/- the CF (- 0.2°C) =°C	corrected temperatu	ıre	
cooler #3°C +/- the CF (- 0.2°C) =°C	corrected temperate	ıre	
Samples outside temp. but received on ice, w/in 6 hours of final sample	ing. 🗷 Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	∐Yes	□No*	⊠N/A
Sample Containers Intact	∑Yes	□No*	
Sample labels match COC ID's	ĭYes	∐No*	
Total number of containers received match COC	Yes	□No*	
Proper containers received for analyses requested on COC	Yes	□No*	
Proper preservative indicated on COC/containers for analyses requeste	xd ⊠Yes	∐No*	□N/A
Complete shipment received in good condition with correct temperatur preservatives and within method specified holding times. Yes [res, containers, la	abels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sam	nple Review - Initia	als and date	BC 11.21.17
Comments:			
			· · · · · · · · · · · · · · · · · · ·
		·	· · · · · · · · · · · · · · · · · · ·

